153. Case Report: Ur-Ine for a Treat – A Case of Diuretic Resistance – The Johns Hopkins Hospital


Manage episode 304130443 series 2585945
由Player FM以及我们的用户群所搜索的CardioNerds — 版权由出版商所拥有,而不是Player FM,音频直接从出版商的伺服器串流. 点击订阅按钮以查看Player FM更新,或粘贴收取点链接到其他播客应用程序里。
CardioNerds (Amit Goyal and Daniel Ambinder), join Dr. Anjali Wagle (Internal medicine resident, Johns Hopkins Hospital) and Dr. Nick Smith (Cardiology fellow, Johns Hopkins Hospital) for an important discussion involving a patient with non-ischemic dilated cardiomyopathy and biventricular heart failure who had developed diuretic resistance. They discuss the role for invasive hemodynamic assessment of volume overload, initial strategies in managing a patient with volume overload, the role of guideline directed therapy in the management of patients with recurrent volume overload, and advanced strategies for diuretic resistance. Dr. Nisha Gilotra (Director of the Cardiac Sarcoidosis Program and assistant professor of medicine, Johns Hopkins Hospital) provides the E-CPR for this episode. Audio editing and Approach to Diuretic Resistance infographic by Dr. Gurleen Kaur (Director of the CardioNerds Internship). This episode is made possible with support from Panacea Financial. Panacea Financial is a national digital bank built for doctors by doctors. Visit panaceafinancial.com today to open your free account and join the growing community of physicians nationwide who expect more from their bank. Panacea Financial is a division of Primis, member FDIC. Claim free CME just for enjoying this episode! Disclosures: NoneJump to: Patient summary - Case teaching - References CardioNerds Case Reports PageCardioNerds Episode PageCardioNerds AcademyCardionerds Healy Honor Roll CardioNerds Journal ClubSubscribe to The Heartbeat Newsletter!Check out CardioNerds SWAG!Become a CardioNerds Patron! Patient Summary - Diuretic Resistance A young woman in her 20s with non-ischemic dilated cardiomyopathy and NYHA class IV ACC stage D biventricular heart failure with an LV ejection fraction of 30-35% on palliative inotropic therapy complicated by cardiogenic cirrhosis and stage IIIb chronic kidney disease presented with acute decompensated heart failure with volume overload. During her hospitalization she exhibited profound signs of diuretic resistance with minimal improvement after increasing inotropes, increasing IV loop diuretics, adding IV thiazides, and trialing continuous IV furosemide. She was given high dose mineralocorticoids, IV acetazolamide, and hypertonic saline paired with IV furosemide and had a durable treatment response. Episode Teaching - Diuretic Resistance Pearls - Diuretic Resistance Diuretic resistance is a complex clinical problem defined as inadequate natriuresis despite an adequate diuretic regimen. However, the practitioner cannot overlook low output heart failure and/or insufficient renal perfusion as the causes for inadequate diuretic response. In cases of inadequate urine output due to low cardiac output, increased inotropic or mechanical support would be the first objective.Confirming adequate cardiac output to support renal perfusion and/or confirming high filling pressures may require invasive hemodynamic assessment.Sodium avidity is most effectively blunted by treating the patient with maximally tolerated guideline directed therapy. This includes but is not limited to a backbone of ARNI (or ACE or ARB), mineralocorticoid receptor antagonists, beta-blockers, and SGLT-2 inhibitors.In cases of advanced diuretic resistance, hypertonic saline paired with high dose IV furosemide can be an effective strategy.In cases of diuretic resistance combined with cirrhosis and heart failure there is a synergistic hyperaldosteronism that can be targeted with higher doses of mineralocorticoid receptors as is seen in the treatment of cirrhosis with ascites. Notes - Diuretic Resistance 1. What is the role for invasive hemodynamic assessment in acute decompensated heart failure? Cases where intracardiac filling pressures are in question: right heart catheterization (RHC) can give insight into the presence and degree of right versus left sided filling pressures.