Artwork

内容由OnBoard!提供。所有播客内容(包括剧集、图形和播客描述)均由 OnBoard! 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

EP 39. 对话硅谷顶尖风投机构a16z合伙人Jennifer: 拆解早期投资及开源独角兽dbt的成长

2:13:25
 
分享
 

Manage episode 377441184 series 3373195
内容由OnBoard!提供。所有播客内容(包括剧集、图形和播客描述)均由 OnBoard! 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

OnBoard! 又一期与硅谷一线投资人的访谈来了!这一次邀请到的是Monica 的好朋友,也是硅谷最顶尖的风险投资基金之一,Andreessen Horowitz, 也就是大家常说的 a16z 的投资合伙人 Jennifer Li!

Hello World, who is OnBoard!?

Jennifer 是一位来自产业界的投资人,原来在独角兽创业公司 AppDynamics 担任PM的她,转型投资人之后,在a16z 的6年里一直专注企业软件、大数据、开源等领域。关注这个方向的创业者和从业者,或许很多人都读过 Jennifer 在a16z 网站上撰写的多篇非常深度的分析文章,包括开源商业化,Modern Data Archiecture 等等。她投资的公司包括大数据领域耳熟能详的 dbt, Motherduck, AI领域最火的公司之一 Elevenlabs 等等。

Jennifer 是硅谷一线基金中为数不多的华人投资合伙人,难得有机会跟 Jennifer 聊一聊她视角,深入剖析她投资 dbt 的过程,对大数据和infra领域的研究,对当下市场和未来机会的思考。这次两个多小时的访谈,Jennifer 的分享超级无私有诚意,绝对值得二刷。

嘉宾长期在北美工作生活,夹杂英文在所难免,不接受抱怨!Enjoy!

嘉宾介绍

Jennifer Li (推特:@JenniferHli), 硅谷顶尖风险投资机构 Andreessen Horowitz (a16z) 投资合伙人,专注于 data infra, 开源,开发者工具,协作应用等。加入 a16z 之前,Jennifer 曾经是 AI 创业公司 Solvvy 和 被 Cisco $3.7Bn 收购的 AppDynamics 的产品经理。

Onboard!主持:Monica(推特:@Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学

我们都聊了什么

01:45 Jennifer 进入风险投资的职业转型,为什么说a16z 是一家独特的风险投资机构

08:43 a16z 如何用庞大的运营机构为被投企业提供价值

11:41 Jennifer 复盘如何在A轮发现40亿美金的开源独角兽 dbt

19:17 dbt 是做什么的?dbt 崛起背后是怎样的大趋势?

21:44 在早期如何识别一个切入点很小的开源工具的商业价值?

27:59 dbt 如何实现产品线延伸?

33:24 dbt 的开源商业化路径是怎样的?开源工具如何实现商业成功?

42:27 a16z 如何思考 data infra 的投资逻辑,如何理解这个领域所经历的产业周期?

46:25 现在创立一家 data infra 公司还有机会吗?未来几年的看点在哪里?

52:50 投资 dbt 时候遇到什么挑战和质疑?

56:09 不同阶段的创业公司,尤其在早期,如何判断投资价值?投资人有哪些常问的问题?

62:16 投资人对于不同阶段的创始人,重点在观察什么?

66:42 近年剧烈变化的资本市场,对于早期 data infra 公司的估值有什么影响?早期投资人的估值判断依据有什么?

74:41 infra 公司的商业化路径应该如何规划?ARR 真的那么重要吗?

79:02 infra 领域最近有什么被高估和被低估的方向?

84:28 这一次的AI浪潮跟“上一波”有什么核心差异?Jennifer 关注的AI投资主题是什么?

93:03 AI 时代的应用价值是什么?AI 应用是否需要做自己的模型?

101:47 Jennifer 在AI领域主要关注哪些重要的趋势?

109:10 如何看待热潮中的AI公司早期增长可能存在的噪音?

114:49 我们还需要一个新的大语言模型公司吗?

117:25 早期公司如何找到共创客户(design partner)?什么是好的共创客户?

120:00 快问快答!

我们提到的内容

词汇注释

  • ELT (Extract, Load, Transform): 一种数据集成过程,其中原始数据被提取,加载到数据存储系统中,然后在存储中进行转换。
  • ETL (Extract, Transform, Load): 一种新的数据集成过程,其中原始数据被提取,转换为结构化格式,然后加载到数据存储系统中
  • Data transformation: : 数据转换是将数据从一种格式或结构转换为另一种的过程,通常是为了使其更适合分析或适应特定的数据库或应用程序
  • Data pipeline: 数据管道是一组将数据从一个系统移动并处理到另一个系统的过程,通常涉及ETL等阶段。
  • Analytics engineering: applies software engineering best practices to analytics code
  • Low hanging fruit: 最容易解决的任务或问题
  • Traction: 初创公司或新产品在获得市场接受、客户或达到某些里程碑方面的可衡量的进展
  • Product Market Fit (PMF): 当一个产品满足真正的市场需求并满足强烈的市场需求时,表明该产品已经找到了目标受众并满足了他们的需求
  • Pave the way forward: 为未来的进展或发展创造一条路径或奠定基础,使后续的行动或创新变得更容易

参考文章

欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!

M小姐研习录 (ID: MissMStudy)

如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!

有任何心得和建议,也欢迎在评论区跟我们互动~

  continue reading

15集单集

Artwork
icon分享
 
Manage episode 377441184 series 3373195
内容由OnBoard!提供。所有播客内容(包括剧集、图形和播客描述)均由 OnBoard! 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

OnBoard! 又一期与硅谷一线投资人的访谈来了!这一次邀请到的是Monica 的好朋友,也是硅谷最顶尖的风险投资基金之一,Andreessen Horowitz, 也就是大家常说的 a16z 的投资合伙人 Jennifer Li!

Hello World, who is OnBoard!?

Jennifer 是一位来自产业界的投资人,原来在独角兽创业公司 AppDynamics 担任PM的她,转型投资人之后,在a16z 的6年里一直专注企业软件、大数据、开源等领域。关注这个方向的创业者和从业者,或许很多人都读过 Jennifer 在a16z 网站上撰写的多篇非常深度的分析文章,包括开源商业化,Modern Data Archiecture 等等。她投资的公司包括大数据领域耳熟能详的 dbt, Motherduck, AI领域最火的公司之一 Elevenlabs 等等。

Jennifer 是硅谷一线基金中为数不多的华人投资合伙人,难得有机会跟 Jennifer 聊一聊她视角,深入剖析她投资 dbt 的过程,对大数据和infra领域的研究,对当下市场和未来机会的思考。这次两个多小时的访谈,Jennifer 的分享超级无私有诚意,绝对值得二刷。

嘉宾长期在北美工作生活,夹杂英文在所难免,不接受抱怨!Enjoy!

嘉宾介绍

Jennifer Li (推特:@JenniferHli), 硅谷顶尖风险投资机构 Andreessen Horowitz (a16z) 投资合伙人,专注于 data infra, 开源,开发者工具,协作应用等。加入 a16z 之前,Jennifer 曾经是 AI 创业公司 Solvvy 和 被 Cisco $3.7Bn 收购的 AppDynamics 的产品经理。

Onboard!主持:Monica(推特:@Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学

我们都聊了什么

01:45 Jennifer 进入风险投资的职业转型,为什么说a16z 是一家独特的风险投资机构

08:43 a16z 如何用庞大的运营机构为被投企业提供价值

11:41 Jennifer 复盘如何在A轮发现40亿美金的开源独角兽 dbt

19:17 dbt 是做什么的?dbt 崛起背后是怎样的大趋势?

21:44 在早期如何识别一个切入点很小的开源工具的商业价值?

27:59 dbt 如何实现产品线延伸?

33:24 dbt 的开源商业化路径是怎样的?开源工具如何实现商业成功?

42:27 a16z 如何思考 data infra 的投资逻辑,如何理解这个领域所经历的产业周期?

46:25 现在创立一家 data infra 公司还有机会吗?未来几年的看点在哪里?

52:50 投资 dbt 时候遇到什么挑战和质疑?

56:09 不同阶段的创业公司,尤其在早期,如何判断投资价值?投资人有哪些常问的问题?

62:16 投资人对于不同阶段的创始人,重点在观察什么?

66:42 近年剧烈变化的资本市场,对于早期 data infra 公司的估值有什么影响?早期投资人的估值判断依据有什么?

74:41 infra 公司的商业化路径应该如何规划?ARR 真的那么重要吗?

79:02 infra 领域最近有什么被高估和被低估的方向?

84:28 这一次的AI浪潮跟“上一波”有什么核心差异?Jennifer 关注的AI投资主题是什么?

93:03 AI 时代的应用价值是什么?AI 应用是否需要做自己的模型?

101:47 Jennifer 在AI领域主要关注哪些重要的趋势?

109:10 如何看待热潮中的AI公司早期增长可能存在的噪音?

114:49 我们还需要一个新的大语言模型公司吗?

117:25 早期公司如何找到共创客户(design partner)?什么是好的共创客户?

120:00 快问快答!

我们提到的内容

词汇注释

  • ELT (Extract, Load, Transform): 一种数据集成过程,其中原始数据被提取,加载到数据存储系统中,然后在存储中进行转换。
  • ETL (Extract, Transform, Load): 一种新的数据集成过程,其中原始数据被提取,转换为结构化格式,然后加载到数据存储系统中
  • Data transformation: : 数据转换是将数据从一种格式或结构转换为另一种的过程,通常是为了使其更适合分析或适应特定的数据库或应用程序
  • Data pipeline: 数据管道是一组将数据从一个系统移动并处理到另一个系统的过程,通常涉及ETL等阶段。
  • Analytics engineering: applies software engineering best practices to analytics code
  • Low hanging fruit: 最容易解决的任务或问题
  • Traction: 初创公司或新产品在获得市场接受、客户或达到某些里程碑方面的可衡量的进展
  • Product Market Fit (PMF): 当一个产品满足真正的市场需求并满足强烈的市场需求时,表明该产品已经找到了目标受众并满足了他们的需求
  • Pave the way forward: 为未来的进展或发展创造一条路径或奠定基础,使后续的行动或创新变得更容易

参考文章

欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!

M小姐研习录 (ID: MissMStudy)

如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!

有任何心得和建议,也欢迎在评论区跟我们互动~

  continue reading

15集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南