Artwork

内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

How Covestro Turns Airflow Into a Simulation Toolbox with Anja Mackenzie

23:10
 
分享
 

Manage episode 520332207 series 2053958
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Building scalable, reproducible workflows for scientific computing often requires bridging the gap between research flexibility and enterprise reliability.

In this episode, Anja MacKenzie, Expert for Cheminformatics at Covestro, explains how her team uses Airflow and Kubernetes to create a shared, self-service platform for computational chemistry.

Key Takeaways:

00:00 Introduction.

06:19 Custom scripts made sharing and reuse difficult.

09:29 Workflows are manually triggered with user traceability.

10:38 Customization supports varied compute requirements.

12:48 Persistent volumes allow tasks to share large amounts of data.

14:25 Custom operators separate logic from infrastructure.

16:43 Modified triggers connect dependent workflows.

18:36 UI plugins enable file uploads and secure access.

Resources Mentioned:

Anja MacKenzie

https://www.linkedin.com/in/anja-mackenzie/

Covestro | LinkedIn

https://www.linkedin.com/company/covestro/

Covestro | Website

https://www.covestro.com

Apache Airflow

https://airflow.apache.org/

Kubernetes

https://kubernetes.io/

Airflow KubernetesPodOperator

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Astronomer

https://www.astronomer.io/

Airflow Academy by Marc Lamberti

https://www.udemy.com/user/lockgfg/?utm_source=adwords&utm_medium=udemyads&utm_campaign=Search_DSA_GammaCatchall_NonP_la.EN_cc.ROW-English&campaigntype=Search&portfolio=ROW-English&language=EN&product=Course&test=&audience=DSA&topic=&priority=Gamma&utm_content=deal4584&utm_term=_._ag_169801645584_._ad_700876640602_._kw__._de_c_._dm__._pl__._ti_dsa-1456167871416_._li_9061346_._pd__._&matchtype=&gad_source=1&gad_campaignid=21341313808&gbraid=0AAAAADROdO1_-I2TMcVyU8F3i1jRXJ24K&gclid=Cj0KCQjwvJHIBhCgARIsAEQnWlC1uYHIRm3y9Q8rPNSuVPNivsxogqfczpKHwhmNho2uKZYC-y0taNQaApU2EALw_wcB

Airflow Documentation

https://airflow.apache.org/docs/

Airflow Plugins

https://airflow.apache.org/docs/apache-airflow/1.10.9/plugins.html

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow

  continue reading

81集单集

Artwork
icon分享
 
Manage episode 520332207 series 2053958
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Building scalable, reproducible workflows for scientific computing often requires bridging the gap between research flexibility and enterprise reliability.

In this episode, Anja MacKenzie, Expert for Cheminformatics at Covestro, explains how her team uses Airflow and Kubernetes to create a shared, self-service platform for computational chemistry.

Key Takeaways:

00:00 Introduction.

06:19 Custom scripts made sharing and reuse difficult.

09:29 Workflows are manually triggered with user traceability.

10:38 Customization supports varied compute requirements.

12:48 Persistent volumes allow tasks to share large amounts of data.

14:25 Custom operators separate logic from infrastructure.

16:43 Modified triggers connect dependent workflows.

18:36 UI plugins enable file uploads and secure access.

Resources Mentioned:

Anja MacKenzie

https://www.linkedin.com/in/anja-mackenzie/

Covestro | LinkedIn

https://www.linkedin.com/company/covestro/

Covestro | Website

https://www.covestro.com

Apache Airflow

https://airflow.apache.org/

Kubernetes

https://kubernetes.io/

Airflow KubernetesPodOperator

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Astronomer

https://www.astronomer.io/

Airflow Academy by Marc Lamberti

https://www.udemy.com/user/lockgfg/?utm_source=adwords&utm_medium=udemyads&utm_campaign=Search_DSA_GammaCatchall_NonP_la.EN_cc.ROW-English&campaigntype=Search&portfolio=ROW-English&language=EN&product=Course&test=&audience=DSA&topic=&priority=Gamma&utm_content=deal4584&utm_term=_._ag_169801645584_._ad_700876640602_._kw__._de_c_._dm__._pl__._ti_dsa-1456167871416_._li_9061346_._pd__._&matchtype=&gad_source=1&gad_campaignid=21341313808&gbraid=0AAAAADROdO1_-I2TMcVyU8F3i1jRXJ24K&gclid=Cj0KCQjwvJHIBhCgARIsAEQnWlC1uYHIRm3y9Q8rPNSuVPNivsxogqfczpKHwhmNho2uKZYC-y0taNQaApU2EALw_wcB

Airflow Documentation

https://airflow.apache.org/docs/

Airflow Plugins

https://airflow.apache.org/docs/apache-airflow/1.10.9/plugins.html

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow

  continue reading

81集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放