Constraint Active Search for Human-in-the-Loop Optimization with Gustavo Malkomes - #505


Manage episode 298718732 series 2355587
由Player FM以及我们的用户群所搜索的TWIML and Sam Charrington — 版权由出版商所拥有,而不是Player FM,音频直接从出版商的伺服器串流. 点击订阅按钮以查看Player FM更新,或粘贴收取点链接到其他播客应用程序里。

Today we continue our ICML series joined by Gustavo Malkomes, a research engineer at Intel via their recent acquisition of SigOpt.

In our conversation with Gustavo, we explore his paper Beyond the Pareto Efficient Frontier: Constraint Active Search for Multiobjective Experimental Design, which focuses on a novel algorithmic solution for the iterative model search process. This new algorithm empowers teams to run experiments where they are not optimizing particular metrics but instead identifying parameter configurations that satisfy constraints in the metric space. This allows users to efficiently explore multiple metrics at once in an efficient, informed, and intelligent way that lends itself to real-world, human-in-the-loop scenarios.

The complete show notes for this episode can be found at