Jeden Tag eine App
…
continue reading
内容由CCC media team提供。所有播客内容(包括剧集、图形和播客描述)均由 CCC media team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Player FM -播客应用
使用Player FM应用程序离线!
使用Player FM应用程序离线!
YuraScanner: Leveraging LLMs for Task-driven Web App Scanning (god2025)
Manage episode 521325309 series 48696
内容由CCC media team提供。所有播客内容(包括剧集、图形和播客描述)均由 CCC media team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Web application scanners are popular and effective black-box testing tools, automating the detection of vulnerabilities by exploring and interacting with user interfaces. Despite their effectiveness, these scanners struggle with discovering deeper states in modern web applications due to their limited understanding of workflows. This study addresses this limitation by introducing YuraScanner, a task-driven web application scanner that leverages large-language models (LLMs) to autonomously execute tasks and workflows. YuraScanner operates as a goal-based agent, suggesting actions to achieve predefined objectives by processing webpages to extract semantic information. Unlike traditional methods that rely on user-provided traces, YuraScanner uses LLMs to bridge the semantic gap, making it web application-agnostic. Using the XSS engine of Black Widow, YuraScanner tests discovered input points for vulnerabilities, enhancing the scanning process's comprehensiveness and accuracy. We evaluated YuraScanner on 20 diverse web applications, focusing on task extraction, execution accuracy, and vulnerability detection. The results demonstrate YuraScanner's superiority in discovering new attack surfaces and deeper states, significantly improving vulnerability detection. Notably, YuraScanner identified 12 unique zero-day XSS vulnerabilities, compared to three by Black Widow. This study highlights YuraScanner's potential to revolutionize web application scanning with its automated, task-driven approach. Licensed to the public under https://creativecommons.org/licenses/by-sa/4.0/ about this event: https://c3voc.de
…
continue reading
3328集单集
Manage episode 521325309 series 48696
内容由CCC media team提供。所有播客内容(包括剧集、图形和播客描述)均由 CCC media team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Web application scanners are popular and effective black-box testing tools, automating the detection of vulnerabilities by exploring and interacting with user interfaces. Despite their effectiveness, these scanners struggle with discovering deeper states in modern web applications due to their limited understanding of workflows. This study addresses this limitation by introducing YuraScanner, a task-driven web application scanner that leverages large-language models (LLMs) to autonomously execute tasks and workflows. YuraScanner operates as a goal-based agent, suggesting actions to achieve predefined objectives by processing webpages to extract semantic information. Unlike traditional methods that rely on user-provided traces, YuraScanner uses LLMs to bridge the semantic gap, making it web application-agnostic. Using the XSS engine of Black Widow, YuraScanner tests discovered input points for vulnerabilities, enhancing the scanning process's comprehensiveness and accuracy. We evaluated YuraScanner on 20 diverse web applications, focusing on task extraction, execution accuracy, and vulnerability detection. The results demonstrate YuraScanner's superiority in discovering new attack surfaces and deeper states, significantly improving vulnerability detection. Notably, YuraScanner identified 12 unique zero-day XSS vulnerabilities, compared to three by Black Widow. This study highlights YuraScanner's potential to revolutionize web application scanning with its automated, task-driven approach. Licensed to the public under https://creativecommons.org/licenses/by-sa/4.0/ about this event: https://c3voc.de
…
continue reading
3328集单集
Minden epizód
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。