Artwork

内容由David Linthicum提供。所有播客内容(包括剧集、图形和播客描述)均由 David Linthicum 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Cloud AI Projects Are Failing—Here's What No One's Telling You

12:12
 
分享
 

Manage episode 513364245 series 3660640
内容由David Linthicum提供。所有播客内容(包括剧集、图形和播客描述)均由 David Linthicum 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Ninety-five percent of enterprise generative AI projects fail, a staggering figure revealed by an MIT study. This failure isn't rooted in insufficient infrastructure, as some vendors claim, but rather in human expertise and preparation. Many enterprises lack the talent required to build, train, and refine foundational AI models. Instead of trying to reinvent the wheel, companies would achieve greater success by leveraging mature, licensed AI models developed at scale by industry-leading providers.

The issue of preparation is also critical. Running large-scale AI successfully today would have required enterprises to start planning up to seven years ago, with investments in power, cooling, networking, and infrastructure. Most organizations didn't take those steps, leaving them unprepared for AI at scale. The solution, however, lies in the cloud. Cloud platforms allow enterprises to bypass infrastructure latency and start AI projects immediately using the data they already have. Public cloud providers like AWS, Azure, and GCP enable companies to connect, unify, and reason across on-premises and cloud-based data without years of preparation or costly upgrades.

The future of AI belongs to organizations that act quickly, leveraging available tools and their existing data to drive competitive advantage. Success isn't a distant goal; it's achievable now with cloud-enabled innovation.

  continue reading

95集单集

Artwork
icon分享
 
Manage episode 513364245 series 3660640
内容由David Linthicum提供。所有播客内容(包括剧集、图形和播客描述)均由 David Linthicum 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Ninety-five percent of enterprise generative AI projects fail, a staggering figure revealed by an MIT study. This failure isn't rooted in insufficient infrastructure, as some vendors claim, but rather in human expertise and preparation. Many enterprises lack the talent required to build, train, and refine foundational AI models. Instead of trying to reinvent the wheel, companies would achieve greater success by leveraging mature, licensed AI models developed at scale by industry-leading providers.

The issue of preparation is also critical. Running large-scale AI successfully today would have required enterprises to start planning up to seven years ago, with investments in power, cooling, networking, and infrastructure. Most organizations didn't take those steps, leaving them unprepared for AI at scale. The solution, however, lies in the cloud. Cloud platforms allow enterprises to bypass infrastructure latency and start AI projects immediately using the data they already have. Public cloud providers like AWS, Azure, and GCP enable companies to connect, unify, and reason across on-premises and cloud-based data without years of preparation or costly upgrades.

The future of AI belongs to organizations that act quickly, leveraging available tools and their existing data to drive competitive advantage. Success isn't a distant goal; it's achievable now with cloud-enabled innovation.

  continue reading

95集单集

모든 에피소드

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放