Artwork

内容由CFRC.ca Podcast Network提供。所有播客内容(包括剧集、图形和播客描述)均由 CFRC.ca Podcast Network 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Dan Reddy, Chemistry – Preparation and Testing of a Volumetrically-Accurate Open Surface Energy Trap (oSET) Wand for Liquid Transfer applications

30:56
 
分享
 

Manage episode 343726920 series 3368682
内容由CFRC.ca Podcast Network提供。所有播客内容(包括剧集、图形和播客描述)均由 CFRC.ca Podcast Network 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

OR in other words – Precisely and Reliably Capturing Tiny Liquid Volumes

The challenge of pipetting small volumes, i.e., sub-microliter amounts, is ubiquitous among the fields of biology, chemistry, and engineering. While accurately and precisely pipetting at the sub-microliter level is indeed a dilemma, the issue is further compounded when dealing with non-aqueous solutions, e.g., biofluids, non-volatile organics, and volatile organics, especially at non-ambient conditions, i.e., elevated or lowered temperatures. Furthermore, given a suitable sub-microliter pipetting technique that accommodates these challenging liquids and their idiosyncrasies, the technique should be potentially automatable, or integrable with automation, for use with assay development and high-throughput screening. My research project aims to circumvent some of the issues associated with handling small volumes of challenging liquids in a manner that is compatible with existing automation systems, namely modified 3D printers and a commercially-available pipetting robot. By using cheap stock materials and pre-existing automation systems, this project will develop a novel “pipetting” technique that reproducibly meters nanoliter-scale liquid volumes for subsequent proof-of-concept testing with an automated well plate-based assay

  continue reading

211集单集

Artwork
icon分享
 
Manage episode 343726920 series 3368682
内容由CFRC.ca Podcast Network提供。所有播客内容(包括剧集、图形和播客描述)均由 CFRC.ca Podcast Network 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

OR in other words – Precisely and Reliably Capturing Tiny Liquid Volumes

The challenge of pipetting small volumes, i.e., sub-microliter amounts, is ubiquitous among the fields of biology, chemistry, and engineering. While accurately and precisely pipetting at the sub-microliter level is indeed a dilemma, the issue is further compounded when dealing with non-aqueous solutions, e.g., biofluids, non-volatile organics, and volatile organics, especially at non-ambient conditions, i.e., elevated or lowered temperatures. Furthermore, given a suitable sub-microliter pipetting technique that accommodates these challenging liquids and their idiosyncrasies, the technique should be potentially automatable, or integrable with automation, for use with assay development and high-throughput screening. My research project aims to circumvent some of the issues associated with handling small volumes of challenging liquids in a manner that is compatible with existing automation systems, namely modified 3D printers and a commercially-available pipetting robot. By using cheap stock materials and pre-existing automation systems, this project will develop a novel “pipetting” technique that reproducibly meters nanoliter-scale liquid volumes for subsequent proof-of-concept testing with an automated well plate-based assay

  continue reading

211集单集

Tất cả các tập

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南