Artwork

内容由Klaviyo Data Science Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Klaviyo Data Science Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Klaviyo Data Science Podcast EP 38 | Production 101

42:01
 
分享
 

Manage episode 373806168 series 3251385
内容由Klaviyo Data Science Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Klaviyo Data Science Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Welcome back to the Klaviyo Data Science podcast! This episode, we dive into…

An introduction to production

What comes after you finish building a data science model? If you’re working on a software project, the answer likely involves that model serving customers in production. Understanding production is crucial for any data scientist or software engineer, so we spend this episode learning about best practices from three experienced Klaviyo engineers.

Listen along to learn more about:

  • How to make sure your code is “battle-ready,” whether you’re working on a data science project or not
  • Why error messages you think are safe to ignore may not actually be safe to ignore
  • One key lesson for safely deploying your code, no matter what environment you work in

“That’s stuck with me through the years: there are these knock-on effects between things. Even if it’s not your code, you should still try to understand how it’s working and whether it can have a ripple effect that comes back and affects your code.”— Chris Conlon, Lead Software Engineer

Check out the full show notes on Medium!

  continue reading

54集单集

Artwork
icon分享
 
Manage episode 373806168 series 3251385
内容由Klaviyo Data Science Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Klaviyo Data Science Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Welcome back to the Klaviyo Data Science podcast! This episode, we dive into…

An introduction to production

What comes after you finish building a data science model? If you’re working on a software project, the answer likely involves that model serving customers in production. Understanding production is crucial for any data scientist or software engineer, so we spend this episode learning about best practices from three experienced Klaviyo engineers.

Listen along to learn more about:

  • How to make sure your code is “battle-ready,” whether you’re working on a data science project or not
  • Why error messages you think are safe to ignore may not actually be safe to ignore
  • One key lesson for safely deploying your code, no matter what environment you work in

“That’s stuck with me through the years: there are these knock-on effects between things. Even if it’s not your code, you should still try to understand how it’s working and whether it can have a ripple effect that comes back and affects your code.”— Chris Conlon, Lead Software Engineer

Check out the full show notes on Medium!

  continue reading

54集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放