使用Player FM应用程序离线!
DIY Fake News Detector: Unmask misinformation with Recurrent Neural Networks
Manage episode 430865970 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.
476集单集
Manage episode 430865970 series 3474148
This story was originally published on HackerNoon at: https://hackernoon.com/diy-fake-news-detector-unmask-misinformation-with-recurrent-neural-networks.
Explore the power of RNNs in fake news detection, from data preprocessing to model evaluation, showcasing their potential to combat misinformation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #deep-learning, #fake-news, #machine-learning, #lstm, #rnn, #misinformation, #fake-news-detector, #recurrent-neural-networks, and more.
This story was written by: @kisican. Learn more about this writer by checking @kisican's about page, and for more stories, please visit hackernoon.com.
Though challenging, it is equally rewarding to be in a position to build a fake news detection system using RNNs. This code will walk you through the stage of data preprocessing to model evaluation. The power of RNNs, especially LSTMs, is utilised while decoding sequential data to make a distinction between real and fake news. If we could fine-tune these models and get hold of global news datasets, AI can then be core in battling misinformation.
476集单集
All episodes
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。