Artwork

内容由Денис, Ігор, Саша提供。所有播客内容(包括剧集、图形和播客描述)均由 Денис, Ігор, Саша 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

№41: Рекомендаційні системи, ч.1. CTO про побудову рекомендаційних систем, їх складові і оцінку якості.

57:29
 
分享
 

Manage episode 364374416 series 3361795
内容由Денис, Ігор, Саша提供。所有播客内容(包括剧集、图形和播客描述)均由 Денис, Ігор, Саша 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47集单集

Artwork
icon分享
 
Manage episode 364374416 series 3361795
内容由Денис, Ігор, Саша提供。所有播客内容(包括剧集、图形和播客描述)均由 Денис, Ігор, Саша 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47集单集

Minden epizód

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放