Artwork

内容由Razib Khan提供。所有播客内容(包括剧集、图形和播客描述)均由 Razib Khan 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Tade Souaiaia: the edge of statistical genetics, race and sports

 
分享
 

Manage episode 462853078 series 3270887
内容由Razib Khan提供。所有播客内容(包括剧集、图形和播客描述)均由 Razib Khan 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

On this episode of Unsupervised Learning Razib talks to Tade Souaiaia, a statistical geneticist at SUNY Downstate about his new preprint, Striking Departures from Polygenic Architecture in the Tails of Complex Traits. Souaiaia trained as a computational biologist at USC, but also has a background as a division I track and field athlete.

Razib and Souaiaia discuss what “genetic architecture” means, and consider what we're finding when we look at extreme trait values in characteristics along a normal distribution. Though traits like height or risk for type II diabetes can be thought of as represented by an idealized Gaussian distribution, real molecular and cellular processes still underlie their phenotypic expression. Souaiaia talks about how genomics has resulted in an influx of data and allowed statistical geneticists with a theoretical bent to actually test some of the models that underpin our understanding of traits and examine how models like mutation-selection balance might differ from what we’ve long expected. After wading through the depths of genetic abstraction and how it intersects with the new age of big data, Razib and Souaiaia talk about race and sports, and whether there might be differences between groups in athletic ability. Souaiaia argues that the underlying historical track record is too variable to draw firm conclusions, while Razib argues that there are theoretical reasons that one should expect differences between groups at the tails and even around the memes.

Subscribe now

Share

Give a gift subscription

Read more

  continue reading

30集单集

Artwork
icon分享
 
Manage episode 462853078 series 3270887
内容由Razib Khan提供。所有播客内容(包括剧集、图形和播客描述)均由 Razib Khan 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

On this episode of Unsupervised Learning Razib talks to Tade Souaiaia, a statistical geneticist at SUNY Downstate about his new preprint, Striking Departures from Polygenic Architecture in the Tails of Complex Traits. Souaiaia trained as a computational biologist at USC, but also has a background as a division I track and field athlete.

Razib and Souaiaia discuss what “genetic architecture” means, and consider what we're finding when we look at extreme trait values in characteristics along a normal distribution. Though traits like height or risk for type II diabetes can be thought of as represented by an idealized Gaussian distribution, real molecular and cellular processes still underlie their phenotypic expression. Souaiaia talks about how genomics has resulted in an influx of data and allowed statistical geneticists with a theoretical bent to actually test some of the models that underpin our understanding of traits and examine how models like mutation-selection balance might differ from what we’ve long expected. After wading through the depths of genetic abstraction and how it intersects with the new age of big data, Razib and Souaiaia talk about race and sports, and whether there might be differences between groups in athletic ability. Souaiaia argues that the underlying historical track record is too variable to draw firm conclusions, while Razib argues that there are theoretical reasons that one should expect differences between groups at the tails and even around the memes.

Subscribe now

Share

Give a gift subscription

Read more

  continue reading

30集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放