Artwork

内容由Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Redis and AI Agent Memory with Andrew Brookins

48:36
 
分享
 

Manage episode 502525995 series 1418007
内容由Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

A key challenge with designing AI agents is that large language models are stateless and have limited context windows. This requires careful engineering to maintain continuity and reliability across sequential LLM interactions. To perform well, agents need fast systems for storing and retrieving short-term conversations, summaries, and long-term facts.

Redis is an open‑source, in‑memory data store widely used for high‑performance caching, analytics, and message brokering. Recent advances have extended Redis’ capabilities to vector search and semantic caching, which has made it an increasingly popular part of the agentic application stack.

Andrew Brookins is a Principal Applied AI Engineer at Redis. He joins the show with Sean Falconer to discuss the challenges of building AI agents, the role of memory in agents, hybrid search versus vector-only search, the concept of world models, and more.

Full Disclosure: This episode is sponsored by Redis.

Sean’s been an academic, startup founder, and Googler. He has published works covering a wide range of topics from AI to quantum computing. Currently, Sean is an AI Entrepreneur in Residence at Confluent where he works on AI strategy and thought leadership. You can connect with Sean on LinkedIn.

Please click here to see the transcript of this episode.

Sponsorship inquiries: [email protected]

The post Redis and AI Agent Memory with Andrew Brookins appeared first on Software Engineering Daily.

  continue reading

1819集单集

Artwork
icon分享
 
Manage episode 502525995 series 1418007
内容由Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

A key challenge with designing AI agents is that large language models are stateless and have limited context windows. This requires careful engineering to maintain continuity and reliability across sequential LLM interactions. To perform well, agents need fast systems for storing and retrieving short-term conversations, summaries, and long-term facts.

Redis is an open‑source, in‑memory data store widely used for high‑performance caching, analytics, and message brokering. Recent advances have extended Redis’ capabilities to vector search and semantic caching, which has made it an increasingly popular part of the agentic application stack.

Andrew Brookins is a Principal Applied AI Engineer at Redis. He joins the show with Sean Falconer to discuss the challenges of building AI agents, the role of memory in agents, hybrid search versus vector-only search, the concept of world models, and more.

Full Disclosure: This episode is sponsored by Redis.

Sean’s been an academic, startup founder, and Googler. He has published works covering a wide range of topics from AI to quantum computing. Currently, Sean is an AI Entrepreneur in Residence at Confluent where he works on AI strategy and thought leadership. You can connect with Sean on LinkedIn.

Please click here to see the transcript of this episode.

Sponsorship inquiries: [email protected]

The post Redis and AI Agent Memory with Andrew Brookins appeared first on Software Engineering Daily.

  continue reading

1819集单集

Alle episoder

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放