Artwork

内容由SNIA Technical Council提供。所有播客内容(包括剧集、图形和播客描述)均由 SNIA Technical Council 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

#143: Deep Compression at Inline Speed for All-Flash Array

35:18
 
分享
 

已归档的系列专辑 ("不活跃的收取点" status)

When? This feed was archived on November 30, 2025 22:12 (19d ago). Last successful fetch was on May 26, 2021 06:04 (4+ y ago)

Why? 不活跃的收取点 status. 我们的伺服器已尝试了一段时间,但仍然无法截取有效的播客收取点

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 288835776 series 1393477
内容由SNIA Technical Council提供。所有播客内容(包括剧集、图形和播客描述)均由 SNIA Technical Council 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
The rapid improvement of overall $/Gbyte has driven the high performance All-Flash Array to be increasingly adopted in both enterprises and cloud datacenters. Besides the raw NAND density scaling with continued semiconductor process improvement, data reduction techniques have and will play a crucial role in further reducing the overall effective cost of All-Flash Array. One of the key data reduction techniques is compression. Compression can be performed both inline and offline. In fact, the best All-Flash Arrays often do both: fast inline compression at a lower compression ratio, and slower, opportunistic offline deep compression at significantly higher compression ratio. However, with the rapid growth of both capacity and sustained throughput due to the consolidation of workloads on a shared All-Flash Array platform, a growing percentage of the data never gets the opportunity for deep compression. There is a deceptively simple solution: Inline Deep Compression with the additional benefits of reduced flash wear and networking load. The challenge, however, is the prohibitive amount of CPU cycles required. Deep compression often requires 10x or more CPU cycles than typical fast inline compression. Even worse, the challenge will continue to grow: CPU performance scaling has slowed down significantly (breakdown of Dennard scaling), but the performance of All-Flash Array has been growing at a far greater pace. In this talk, I will explain how we can meet this challenge with a domain-specific hardware design. The hardware platform is a FPGA-based PCIe card that is programmable. It can sustain 5+Gbyte/s of deep compression throughput with low latency for even small data block sizes (TByte/s BW and less than 10ns of latency) and the almost unlimited parallelism available on a modern mid-range FPGA device. The hardware compression algorithm is trained with a vast amount of data available to our systems. Our benchmarks show it can match or outperform some of the best software compressors available in the market without taxing the CPU. Learning Objectives: Hardware Architecture for Inline Deep Compression,Design of Hardware Deep Compression Engine,Inline and offline compression of All-Flash Array.
  continue reading

146集单集

Artwork
icon分享
 

已归档的系列专辑 ("不活跃的收取点" status)

When? This feed was archived on November 30, 2025 22:12 (19d ago). Last successful fetch was on May 26, 2021 06:04 (4+ y ago)

Why? 不活跃的收取点 status. 我们的伺服器已尝试了一段时间,但仍然无法截取有效的播客收取点

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 288835776 series 1393477
内容由SNIA Technical Council提供。所有播客内容(包括剧集、图形和播客描述)均由 SNIA Technical Council 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
The rapid improvement of overall $/Gbyte has driven the high performance All-Flash Array to be increasingly adopted in both enterprises and cloud datacenters. Besides the raw NAND density scaling with continued semiconductor process improvement, data reduction techniques have and will play a crucial role in further reducing the overall effective cost of All-Flash Array. One of the key data reduction techniques is compression. Compression can be performed both inline and offline. In fact, the best All-Flash Arrays often do both: fast inline compression at a lower compression ratio, and slower, opportunistic offline deep compression at significantly higher compression ratio. However, with the rapid growth of both capacity and sustained throughput due to the consolidation of workloads on a shared All-Flash Array platform, a growing percentage of the data never gets the opportunity for deep compression. There is a deceptively simple solution: Inline Deep Compression with the additional benefits of reduced flash wear and networking load. The challenge, however, is the prohibitive amount of CPU cycles required. Deep compression often requires 10x or more CPU cycles than typical fast inline compression. Even worse, the challenge will continue to grow: CPU performance scaling has slowed down significantly (breakdown of Dennard scaling), but the performance of All-Flash Array has been growing at a far greater pace. In this talk, I will explain how we can meet this challenge with a domain-specific hardware design. The hardware platform is a FPGA-based PCIe card that is programmable. It can sustain 5+Gbyte/s of deep compression throughput with low latency for even small data block sizes (TByte/s BW and less than 10ns of latency) and the almost unlimited parallelism available on a modern mid-range FPGA device. The hardware compression algorithm is trained with a vast amount of data available to our systems. Our benchmarks show it can match or outperform some of the best software compressors available in the market without taxing the CPU. Learning Objectives: Hardware Architecture for Inline Deep Compression,Design of Hardware Deep Compression Engine,Inline and offline compression of All-Flash Array.
  continue reading

146集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放