Artwork

内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

AI-Powered Vehicle Automation at Ford Motor Company with Serjesh Sharma

26:11
 
分享
 

Manage episode 439652095 series 2948506
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Harnessing data at scale is the key to driving innovation in autonomous vehicle technology. In this episode, we uncover how advanced orchestration tools are transforming machine learning operations in the automotive industry. Serjesh Sharma, Supervisor ADAS Machine Learning Operations (MLOps) at Ford Motor Company, joins us to discuss the challenges and innovations his team faces working to enhance vehicle safety and automation. Serjesh shares insights into the intricate data processes that support Ford’s Advanced Driver Assistance Systems (ADAS) and how his team leverages Apache Airflow to manage massive data loads efficiently. Key Takeaways: (01:44) ADAS involves advanced features like pre-collision assist and self-driving capabilities. (04:47) Ensuring sensor accuracy and vehicle safety requires extensive data processing. (05:08) The combination of on-prem and cloud infrastructure optimizes data handling. (09:27) Ford processes around one petabyte of data per week, using both CPUs and GPUs. (10:33) Implementing software engineering best practices to improve scalability and reliability. (15:18) GitHub Issues streamline onboarding and infrastructure provisioning. (17:00) Airflow's modular design allows Ford to manage complex data pipelines. (19:00) Kubernetes pod operators help optimize resource usage for CPU-intensive tasks. (20:35) Ford's scale challenges led to customized Airflow configurations for high concurrency. (21:02) Advanced orchestration tools are pivotal in managing vast data landscapes in automotive innovation. Resources Mentioned: Serjesh Sharma - www.linkedin.com/in/serjeshsharma/ Ford Motor Company - www.linkedin.com/company/ford-motor-company/ Apache Airflow - airflow.apache.org/ Kubernetes - kubernetes.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

50集单集

Artwork
icon分享
 
Manage episode 439652095 series 2948506
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Harnessing data at scale is the key to driving innovation in autonomous vehicle technology. In this episode, we uncover how advanced orchestration tools are transforming machine learning operations in the automotive industry. Serjesh Sharma, Supervisor ADAS Machine Learning Operations (MLOps) at Ford Motor Company, joins us to discuss the challenges and innovations his team faces working to enhance vehicle safety and automation. Serjesh shares insights into the intricate data processes that support Ford’s Advanced Driver Assistance Systems (ADAS) and how his team leverages Apache Airflow to manage massive data loads efficiently. Key Takeaways: (01:44) ADAS involves advanced features like pre-collision assist and self-driving capabilities. (04:47) Ensuring sensor accuracy and vehicle safety requires extensive data processing. (05:08) The combination of on-prem and cloud infrastructure optimizes data handling. (09:27) Ford processes around one petabyte of data per week, using both CPUs and GPUs. (10:33) Implementing software engineering best practices to improve scalability and reliability. (15:18) GitHub Issues streamline onboarding and infrastructure provisioning. (17:00) Airflow's modular design allows Ford to manage complex data pipelines. (19:00) Kubernetes pod operators help optimize resource usage for CPU-intensive tasks. (20:35) Ford's scale challenges led to customized Airflow configurations for high concurrency. (21:02) Advanced orchestration tools are pivotal in managing vast data landscapes in automotive innovation. Resources Mentioned: Serjesh Sharma - www.linkedin.com/in/serjeshsharma/ Ford Motor Company - www.linkedin.com/company/ford-motor-company/ Apache Airflow - airflow.apache.org/ Kubernetes - kubernetes.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

50集单集

همه قسمت ها

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放