Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Player FM -播客应用
使用Player FM应用程序离线!
使用Player FM应用程序离线!
Mastering Data Orchestration with Airflow at M Science with Ben Tallman
Manage episode 436326794 series 2948506
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Mastering the flow of data is essential for driving innovation and efficiency in today’s competitive landscape. In this episode, we explore the evolution of data orchestration and the pivotal role of Apache Airflow in modern data workflows. Ben Tallman, Chief Technology Officer at M Science, joins us and shares his extensive experience with Airflow, detailing its early adoption, evolution and the profound impact it has had on data engineering practices. His insights reveal how leveraging Airflow can streamline complex data processes, enhance observability and ultimately drive business success. Key Takeaways: (02:31) Benjamin’s journey with Airflow and its early adoption. (05:36) The transition from legacy schedulers to Airflow at Apigee and later Google. (08:52) The challenges and benefits of running production-grade Airflow instances. (10:46) How Airflow facilitates the management of large-scale data at M Science. (11:56) The importance of reducing time to value for customers using data products. (13:32) Airflow’s role in ensuring observability and reliability in data workflows. (17:00) Managing petabytes of data and billions of records efficiently. (19:08) Integration of various data sources and ensuring data product quality. (20:04) Leveraging Airflow for data observability and reducing time to value. (22:04) Benjamin’s vision for the future development of Airflow, including audit trails for variables. Resources Mentioned: Ben Tallman - https://www.linkedin.com/in/btallman/ M Science - https://www.linkedin.com/company/m-science-llc/ Apache Airflow - https://airflow.apache.org/ Astronomer - https://www.astronomer.io/ Databricks - https://databricks.com/ Snowflake - https://www.snowflake.com/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
37集单集
Mastering Data Orchestration with Airflow at M Science with Ben Tallman
The Data Flowcast: Mastering Airflow for Data Engineering & AI
Manage episode 436326794 series 2948506
内容由The Data Flowcast提供。所有播客内容(包括剧集、图形和播客描述)均由 The Data Flowcast 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Mastering the flow of data is essential for driving innovation and efficiency in today’s competitive landscape. In this episode, we explore the evolution of data orchestration and the pivotal role of Apache Airflow in modern data workflows. Ben Tallman, Chief Technology Officer at M Science, joins us and shares his extensive experience with Airflow, detailing its early adoption, evolution and the profound impact it has had on data engineering practices. His insights reveal how leveraging Airflow can streamline complex data processes, enhance observability and ultimately drive business success. Key Takeaways: (02:31) Benjamin’s journey with Airflow and its early adoption. (05:36) The transition from legacy schedulers to Airflow at Apigee and later Google. (08:52) The challenges and benefits of running production-grade Airflow instances. (10:46) How Airflow facilitates the management of large-scale data at M Science. (11:56) The importance of reducing time to value for customers using data products. (13:32) Airflow’s role in ensuring observability and reliability in data workflows. (17:00) Managing petabytes of data and billions of records efficiently. (19:08) Integration of various data sources and ensuring data product quality. (20:04) Leveraging Airflow for data observability and reducing time to value. (22:04) Benjamin’s vision for the future development of Airflow, including audit trails for variables. Resources Mentioned: Ben Tallman - https://www.linkedin.com/in/btallman/ M Science - https://www.linkedin.com/company/m-science-llc/ Apache Airflow - https://airflow.apache.org/ Astronomer - https://www.astronomer.io/ Databricks - https://databricks.com/ Snowflake - https://www.snowflake.com/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
37集单集
所有剧集
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。