Artwork

内容由The Seedcamp Podcast and Carlos Espinal提供。所有播客内容(包括剧集、图形和播客描述)均由 The Seedcamp Podcast and Carlos Espinal 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

[Seedcamp Firsts] How to A/B Test Product Changes and Set up Good Data Science Practices

26:08
 
分享
 

Manage episode 405127091 series 73827
内容由The Seedcamp Podcast and Carlos Espinal提供。所有播客内容(包括剧集、图形和播客描述)均由 The Seedcamp Podcast and Carlos Espinal 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
In a follow-up to their Seedcamp Firsts conversation on data, our Venture Partner Devin Hunt and Candice Ren, Founder of analytics agency 173Tech and a member of the Seedcamp Expert Collective, dive deep into A/B testing and good data science practices. With new and exciting AI technology emerging around recommendation engines, how can product leads evaluate which solution is better and how to really measure a “better recommendation”? Focusing on a specific case study - a furniture marketplace, Candice, who worked on A/B testing and recommendation engines for Bumble, Plend Loans, MUBI, Treatwell and many others, shares her thoughts on: - the intricacies of setting up and analyzing an A/B test experiment focused on comparing two different recommendation algorithms - how you set your hypothesis - the best way to segment your user basis - how to select what you are controlling for (e.g. click-through rate) - how to interpret test results and consider broader business metrics impact. Candice and Devin also emphasize the importance of granular testing, proper test design, and documentation of test results for informed decision-making within a company's testing framework.
  continue reading

297集单集

Artwork
icon分享
 
Manage episode 405127091 series 73827
内容由The Seedcamp Podcast and Carlos Espinal提供。所有播客内容(包括剧集、图形和播客描述)均由 The Seedcamp Podcast and Carlos Espinal 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
In a follow-up to their Seedcamp Firsts conversation on data, our Venture Partner Devin Hunt and Candice Ren, Founder of analytics agency 173Tech and a member of the Seedcamp Expert Collective, dive deep into A/B testing and good data science practices. With new and exciting AI technology emerging around recommendation engines, how can product leads evaluate which solution is better and how to really measure a “better recommendation”? Focusing on a specific case study - a furniture marketplace, Candice, who worked on A/B testing and recommendation engines for Bumble, Plend Loans, MUBI, Treatwell and many others, shares her thoughts on: - the intricacies of setting up and analyzing an A/B test experiment focused on comparing two different recommendation algorithms - how you set your hypothesis - the best way to segment your user basis - how to select what you are controlling for (e.g. click-through rate) - how to interpret test results and consider broader business metrics impact. Candice and Devin also emphasize the importance of granular testing, proper test design, and documentation of test results for informed decision-making within a company's testing framework.
  continue reading

297集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放