使用Player FM应用程序离线!
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust (Explained)
Manage episode 375478729 series 2974171
#stablediffusion #ai #watermark Watermarking the outputs of generative models is usually done as a post-processing step on the model outputs. Tree-Ring Watermarks are applied in the latent space at the beginning of a diffusion process, which makes them nearly undetectable, robust to strong distortions, and only recoverable by the model author. It is a very promising technique with applications potentially beyond watermarking itself. OUTLINE: 0:00 - Introduction & Overview 1:30 - Why Watermarking? 4:20 - Diffusion Models Recap 13:40 - Inverting Diffusion Models 17:05 - Tree-Ring Watermarking 26:15 - Effects of Tree-Ring Watermarks 30:00 - Experimental Results 32:40 - Limitations 34:40 - Conclusion Paper: https://arxiv.org/abs/2305.20030 Abstract: Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at this https URL. Authors: Yuxin Wen, John Kirchenbauer, Jonas Geiping, Tom Goldstein Links: Homepage: https://ykilcher.com Merch: https://ykilcher.com/merch YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ykilcher.com/discord LinkedIn: https://www.linkedin.com/in/ykilcher If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://www.subscribestar.com/yannickilcher Patreon: https://www.patreon.com/yannickilcher Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
177集单集
Manage episode 375478729 series 2974171
#stablediffusion #ai #watermark Watermarking the outputs of generative models is usually done as a post-processing step on the model outputs. Tree-Ring Watermarks are applied in the latent space at the beginning of a diffusion process, which makes them nearly undetectable, robust to strong distortions, and only recoverable by the model author. It is a very promising technique with applications potentially beyond watermarking itself. OUTLINE: 0:00 - Introduction & Overview 1:30 - Why Watermarking? 4:20 - Diffusion Models Recap 13:40 - Inverting Diffusion Models 17:05 - Tree-Ring Watermarking 26:15 - Effects of Tree-Ring Watermarks 30:00 - Experimental Results 32:40 - Limitations 34:40 - Conclusion Paper: https://arxiv.org/abs/2305.20030 Abstract: Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at this https URL. Authors: Yuxin Wen, John Kirchenbauer, Jonas Geiping, Tom Goldstein Links: Homepage: https://ykilcher.com Merch: https://ykilcher.com/merch YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ykilcher.com/discord LinkedIn: https://www.linkedin.com/in/ykilcher If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://www.subscribestar.com/yannickilcher Patreon: https://www.patreon.com/yannickilcher Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
177集单集
所有剧集
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。