Artwork

内容由John Danaher提供。所有播客内容(包括剧集、图形和播客描述)均由 John Danaher 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

81 – Consumer Credit, Big Tech and AI Crime

 
分享
 

Manage episode 272357877 series 1328245
内容由John Danaher提供。所有播客内容(包括剧集、图形和播客描述)均由 John Danaher 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In today’s episode, I talk to Nikita Aggarwal about the legal and regulatory aspects of AI and algorithmic governance. We focus, in particular, on three topics: (i) algorithmic credit scoring; (ii) the problem of ‘too big to fail’ tech platforms and (iii) AI crime. Nikita is a DPhil (PhD) candidate at the Faculty of Law at Oxford, as well as a Research Associate at the Oxford Internet Institute’s Digital Ethics Lab. Her research examines the legal and ethical challenges due to emerging, data-driven technologies, with a particular focus on machine learning in consumer lending. Prior to entering academia, she was an attorney in the legal department of the International Monetary Fund, where she advised on financial sector law reform in the Euro area.

You can listen to the episode below or download here. You can also subscribe on Apple Podcasts, Stitcher, Spotify and other podcasting services (the RSS feed is here).

Show Notes

Topics discussed include:

  • The digitisation, datafication and disintermediation of consumer credit markets
  • Algorithmic credit scoring
  • The problems of risk and bias in credit scoring
  • How law and regulation can address these problems
  • Tech platforms that are too big to fail
  • What should we do if Facebook fails?
  • The forms of AI crime
  • How to address the problem of AI crime

Relevant Links

  continue reading

64集单集

Artwork
icon分享
 
Manage episode 272357877 series 1328245
内容由John Danaher提供。所有播客内容(包括剧集、图形和播客描述)均由 John Danaher 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In today’s episode, I talk to Nikita Aggarwal about the legal and regulatory aspects of AI and algorithmic governance. We focus, in particular, on three topics: (i) algorithmic credit scoring; (ii) the problem of ‘too big to fail’ tech platforms and (iii) AI crime. Nikita is a DPhil (PhD) candidate at the Faculty of Law at Oxford, as well as a Research Associate at the Oxford Internet Institute’s Digital Ethics Lab. Her research examines the legal and ethical challenges due to emerging, data-driven technologies, with a particular focus on machine learning in consumer lending. Prior to entering academia, she was an attorney in the legal department of the International Monetary Fund, where she advised on financial sector law reform in the Euro area.

You can listen to the episode below or download here. You can also subscribe on Apple Podcasts, Stitcher, Spotify and other podcasting services (the RSS feed is here).

Show Notes

Topics discussed include:

  • The digitisation, datafication and disintermediation of consumer credit markets
  • Algorithmic credit scoring
  • The problems of risk and bias in credit scoring
  • How law and regulation can address these problems
  • Tech platforms that are too big to fail
  • What should we do if Facebook fails?
  • The forms of AI crime
  • How to address the problem of AI crime

Relevant Links

  continue reading

64集单集

すべてのエピソード

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南