Artwork

内容由Dependent Variable提供。所有播客内容(包括剧集、图形和播客描述)均由 Dependent Variable 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Ssn2 Episode 1: Effective and viable Data engineering with Batatunde Ekemode from Africa's Talking

1:09:32
 
分享
 

Manage episode 348545557 series 3104198
内容由Dependent Variable提供。所有播客内容(包括剧集、图形和播客描述)均由 Dependent Variable 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Data engineering has recently stood out as a differentiating factor for effective and commercially viable Data science practice in companies gearing up for scale. Data engineering is without a doubt the most important cog that keeps the data science wheel moving. Yet, being practical and effective in this sub-field of data science remains quite demanding owing to the steep learning curve it is associated with and it's associated expenses. That is why is this episode, an analytics lead and accomplished data engineer Babatunde Ekemode, Cate Gitau, Anthony Odhiambo, and Victor Mochengo sat down and touched on:

1) Quick roundup of Deep Learning Indaba

2) What does a data engineer really do & how does s/he add commercial value to a business?

3) Differentiating a data engineer, data analyst and data scientist and the case of data ninjas who can do it all!

4) In what order to recruit data professionals? Data engineer, analyst or scientist who comes first? Do software engineers make better transitions to data engineering?

5) How to monetize data skills and establish a clear Return On Investment case for data & data engineering

6) Knowledge stack that makes a good data engineer

7) What's a data engineer's work toolkit and process flow like? Deliberately setting up quality data processes in line with domain expertise

8) Setting up cost effective data architectures and choosing the right tools

9) Challenges in data engineering and how to mitigate them

10) How is data engineering shaping up over the next 5 years

  continue reading

9集单集

Artwork
icon分享
 
Manage episode 348545557 series 3104198
内容由Dependent Variable提供。所有播客内容(包括剧集、图形和播客描述)均由 Dependent Variable 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Data engineering has recently stood out as a differentiating factor for effective and commercially viable Data science practice in companies gearing up for scale. Data engineering is without a doubt the most important cog that keeps the data science wheel moving. Yet, being practical and effective in this sub-field of data science remains quite demanding owing to the steep learning curve it is associated with and it's associated expenses. That is why is this episode, an analytics lead and accomplished data engineer Babatunde Ekemode, Cate Gitau, Anthony Odhiambo, and Victor Mochengo sat down and touched on:

1) Quick roundup of Deep Learning Indaba

2) What does a data engineer really do & how does s/he add commercial value to a business?

3) Differentiating a data engineer, data analyst and data scientist and the case of data ninjas who can do it all!

4) In what order to recruit data professionals? Data engineer, analyst or scientist who comes first? Do software engineers make better transitions to data engineering?

5) How to monetize data skills and establish a clear Return On Investment case for data & data engineering

6) Knowledge stack that makes a good data engineer

7) What's a data engineer's work toolkit and process flow like? Deliberately setting up quality data processes in line with domain expertise

8) Setting up cost effective data architectures and choosing the right tools

9) Challenges in data engineering and how to mitigate them

10) How is data engineering shaping up over the next 5 years

  continue reading

9集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放