In the 1980s, there were only 63 Black films by, for, or about Black Americans. But in the 1990s, that number quadrupled, with 220 Black films making their way to cinema screens nationwide. What sparked this “Black New Wave?” Who blazed this path for contemporaries like Ava DuVernay, Kasi Lemmons and Jordan Peele? And how did these films transform American culture as a whole? Presenting The Class of 1989, a new limited-run series from pop culture critics Len Webb and Vincent Williams, hosts ...
…
continue reading
内容由Film Stuff and Do Stuff提供。所有播客内容(包括剧集、图形和播客描述)均由 Film Stuff and Do Stuff 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
Player FM -播客应用
使用Player FM应用程序离线!
使用Player FM应用程序离线!
Data driven storytelling
Manage episode 226485939 series 1411482
内容由Film Stuff and Do Stuff提供。所有播客内容(包括剧集、图形和播客描述)均由 Film Stuff and Do Stuff 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
In this episode we dive into the almighty algorithm and talk about how it's changed the way filmmakers tell stories. Soo Zee makes a good argument for why this is a bad thing, and Leigh reveals how much we pay attention our own YouTube analytics. We talk about Netflix's recommendation engine and why it's simultaneously the best and worst thing to happen to streaming video. We also compare iTunes Music to Spotify and talk about what place human curation has in this world of AI, big data, and deep learning. • You can find that article we mentioned about how Maniac's story was influenced by Netflix streaming data here https://qz.com/quartzy/1372129/maniac-director-cary-fukunaga-explains-how-data-call-the-shots-at-netflix/ • If you want to know more about how House of Cards came to be, read this article from 2012 about how Netflix used big data when making House of Cards. Note the tone, where WIRED makes some stuff that's now completely commonplace seem utterly groundbreaking, like uploading all the episodes at once. https://www.wired.com/2012/11/netflix-data-gamble/ • Here's an older piece about how even after Neilsen switched from phone surveys and media diaries to data collection boxes, their ratings data was still deeply flawed https://www.vulture.com/2011/01/why-nielsen-ratings-are-inaccurate-and-why-theyll-stay-that-way.html • A great, simple-english explanation as to why pure randomness is impossible on a deterministic machine like a computer https://engineering.mit.edu/engage/ask-an-engineer/can-a-computer-generate-a-truly-random-number/ • That story about having to fix the iTunes random shuffle feature was in a book all about random fallacies called The Drunkard's Walk by Leonard Mlodinow https://www.penguinrandomhouse.com/books/115699/the-drunkards-walk-by-leonard-mlodinow/9780307275172/ but if you don't want to read the book you can also read more about it from this explanation in The Independent https://www.independent.co.uk/life-style/gadgets-and-tech/news/why-random-shuffle-feels-far-from-random-10066621.html • Leigh's really interested in machine bias, and we talked for a good 30 minutes about why algorithms don't have to be the way the currently are. Unfortunately we had to cut that bit for time, but if you want a good, solid intro to the darker side of algorithms, check out this Note to Self podcast episode with Julia Angwin https://www.wnycstudios.org/story/propublica-facebook-algorithms-bias-privacy and also the Pro Public project "Breaking the Black Box" https://www.propublica.org/article/breaking-the-black-box-when-machines-learn-by-experimenting-on-us • Here's some more details about how never think curates videos https://about.neverthink.tv/faq/
…
continue reading
28集单集
Manage episode 226485939 series 1411482
内容由Film Stuff and Do Stuff提供。所有播客内容(包括剧集、图形和播客描述)均由 Film Stuff and Do Stuff 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal。
In this episode we dive into the almighty algorithm and talk about how it's changed the way filmmakers tell stories. Soo Zee makes a good argument for why this is a bad thing, and Leigh reveals how much we pay attention our own YouTube analytics. We talk about Netflix's recommendation engine and why it's simultaneously the best and worst thing to happen to streaming video. We also compare iTunes Music to Spotify and talk about what place human curation has in this world of AI, big data, and deep learning. • You can find that article we mentioned about how Maniac's story was influenced by Netflix streaming data here https://qz.com/quartzy/1372129/maniac-director-cary-fukunaga-explains-how-data-call-the-shots-at-netflix/ • If you want to know more about how House of Cards came to be, read this article from 2012 about how Netflix used big data when making House of Cards. Note the tone, where WIRED makes some stuff that's now completely commonplace seem utterly groundbreaking, like uploading all the episodes at once. https://www.wired.com/2012/11/netflix-data-gamble/ • Here's an older piece about how even after Neilsen switched from phone surveys and media diaries to data collection boxes, their ratings data was still deeply flawed https://www.vulture.com/2011/01/why-nielsen-ratings-are-inaccurate-and-why-theyll-stay-that-way.html • A great, simple-english explanation as to why pure randomness is impossible on a deterministic machine like a computer https://engineering.mit.edu/engage/ask-an-engineer/can-a-computer-generate-a-truly-random-number/ • That story about having to fix the iTunes random shuffle feature was in a book all about random fallacies called The Drunkard's Walk by Leonard Mlodinow https://www.penguinrandomhouse.com/books/115699/the-drunkards-walk-by-leonard-mlodinow/9780307275172/ but if you don't want to read the book you can also read more about it from this explanation in The Independent https://www.independent.co.uk/life-style/gadgets-and-tech/news/why-random-shuffle-feels-far-from-random-10066621.html • Leigh's really interested in machine bias, and we talked for a good 30 minutes about why algorithms don't have to be the way the currently are. Unfortunately we had to cut that bit for time, but if you want a good, solid intro to the darker side of algorithms, check out this Note to Self podcast episode with Julia Angwin https://www.wnycstudios.org/story/propublica-facebook-algorithms-bias-privacy and also the Pro Public project "Breaking the Black Box" https://www.propublica.org/article/breaking-the-black-box-when-machines-learn-by-experimenting-on-us • Here's some more details about how never think curates videos https://about.neverthink.tv/faq/
…
continue reading
28集单集
كل الحلقات
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。