Artwork

内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

#147 Fast Approximate Inference without Convergence Worries, with Martin Ingram

1:09:55
 
分享
 

Manage episode 523870679 series 2943438
内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • DADVI is a new approach to variational inference that aims to improve speed and accuracy.
  • DADVI allows for faster Bayesian inference without sacrificing model flexibility.
  • Linear response can help recover covariance estimates from mean estimates.
  • DADVI performs well in mixed models and hierarchical structures.
  • Normalizing flows present an interesting avenue for enhancing variational inference.
  • DADVI can handle large datasets effectively, improving predictive performance.
  • Future enhancements for DADVI may include GPU support and linear response integration.

Chapters:

13:17 Understanding DADVI: A New Approach

21:54 Mean Field Variational Inference Explained

26:38 Linear Response and Covariance Estimation

31:21 Deterministic vs Stochastic Optimization in DADVI

35:00 Understanding DADVI and Its Optimization Landscape

37:59 Theoretical Insights and Practical Applications of DADVI

42:12 Comparative Performance of DADVI in Real Applications

45:03 Challenges and Effectiveness of DADVI in Various Models

48:51 Exploring Future Directions for Variational Inference

53:04 Final Thoughts and Advice for Practitioners

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Aubrey Clayton, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël...

  continue reading

182集单集

Artwork
icon分享
 
Manage episode 523870679 series 2943438
内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • DADVI is a new approach to variational inference that aims to improve speed and accuracy.
  • DADVI allows for faster Bayesian inference without sacrificing model flexibility.
  • Linear response can help recover covariance estimates from mean estimates.
  • DADVI performs well in mixed models and hierarchical structures.
  • Normalizing flows present an interesting avenue for enhancing variational inference.
  • DADVI can handle large datasets effectively, improving predictive performance.
  • Future enhancements for DADVI may include GPU support and linear response integration.

Chapters:

13:17 Understanding DADVI: A New Approach

21:54 Mean Field Variational Inference Explained

26:38 Linear Response and Covariance Estimation

31:21 Deterministic vs Stochastic Optimization in DADVI

35:00 Understanding DADVI and Its Optimization Landscape

37:59 Theoretical Insights and Practical Applications of DADVI

42:12 Comparative Performance of DADVI in Real Applications

45:03 Challenges and Effectiveness of DADVI in Various Models

48:51 Exploring Future Directions for Variational Inference

53:04 Final Thoughts and Advice for Practitioners

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Giuliano Cruz, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Aubrey Clayton, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël...

  continue reading

182集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放