Artwork

内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Episode 11: Introduction of hydrogen produces eco-friendly thermoelectric oxides

3:11
 
分享
 

Manage episode 374253205 series 2602554
内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via the Seebeck effect. Conventional thermoelectric materials, however, are composed of heavy metals such as lead and tellurium, which are toxic. To incorporate hydrogen into the structure, and so replace the toxic elements, Katase’s research team used a rapid thermal sintering process where the starting material—which already includes the hydrogen—is sealed inside a tube. Some of the oxygen sites in strontium titanate are then substituted by the hydrogen. “More than expected, the hydrogen substitution reduces thermal conductivity less than half, and also increases electronic conductivity, resulting in the large enhancement of energy conversion efficiency,” Katase says. This work was published in a recent issue of Advanced Functional Materials.

  continue reading

103集单集

Artwork
icon分享
 
Manage episode 374253205 series 2602554
内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via the Seebeck effect. Conventional thermoelectric materials, however, are composed of heavy metals such as lead and tellurium, which are toxic. To incorporate hydrogen into the structure, and so replace the toxic elements, Katase’s research team used a rapid thermal sintering process where the starting material—which already includes the hydrogen—is sealed inside a tube. Some of the oxygen sites in strontium titanate are then substituted by the hydrogen. “More than expected, the hydrogen substitution reduces thermal conductivity less than half, and also increases electronic conductivity, resulting in the large enhancement of energy conversion efficiency,” Katase says. This work was published in a recent issue of Advanced Functional Materials.

  continue reading

103集单集

Kaikki jaksot

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放