使用Player FM应用程序离线!
Episode 14: Liquid samples coated in gold nanorods enhance cellular characterization
Manage episode 377274409 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Stanford University’s Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain reaction test, which takes hours, Dionne’s research group uses Raman spectroscopy combined with machine learning to detect the presence of two specific bacteria in samples that contained red blood cells. The addition of gold nanorods to the samples further enhanced the signal from the bacteria. Another way the research team accelerated the detection of bacteria signal was by building an acoustic bioprinter for the liquid samples: the specialist printer uses focused soundwaves to break the surface tension of a larger droplet, maintaining cell viability. This work was published in a recent issue of Nano Letters.
102集单集
Manage episode 377274409 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Stanford University’s Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain reaction test, which takes hours, Dionne’s research group uses Raman spectroscopy combined with machine learning to detect the presence of two specific bacteria in samples that contained red blood cells. The addition of gold nanorods to the samples further enhanced the signal from the bacteria. Another way the research team accelerated the detection of bacteria signal was by building an acoustic bioprinter for the liquid samples: the specialist printer uses focused soundwaves to break the surface tension of a larger droplet, maintaining cell viability. This work was published in a recent issue of Nano Letters.
102集单集
所有剧集
×欢迎使用Player FM
Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。