Artwork

内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Episode 2: Biocompatible piezoelectric materials promote neural regeneration

5:20
 
分享
 

Manage episode 398553876 series 2602554
内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. They found that the piezolectrically activated composites allowed the cells to spread across the surface of the material and saw an increase in the amount of neurons. Usually the use of piezoelectric materials in tissue engineering requires mechanical stimulation from either movement of the body or the application of ultrasound. In this research, no additional mechanical stimulation was required. This work was published in a recent issue of Advanced Engineering Materials.

  continue reading

102集单集

Artwork
icon分享
 
Manage episode 398553876 series 2602554
内容由MRS Bulletin提供。所有播客内容(包括剧集、图形和播客描述)均由 MRS Bulletin 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. They found that the piezolectrically activated composites allowed the cells to spread across the surface of the material and saw an increase in the amount of neurons. Usually the use of piezoelectric materials in tissue engineering requires mechanical stimulation from either movement of the body or the application of ultrasound. In this research, no additional mechanical stimulation was required. This work was published in a recent issue of Advanced Engineering Materials.

  continue reading

102集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南