Artwork

内容由NLP Highlights and Allen Institute for Artificial Intelligence提供。所有播客内容(包括剧集、图形和播客描述)均由 NLP Highlights and Allen Institute for Artificial Intelligence 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

96 - Question Answering as an Annotation Format, with Luke Zettlemoyer

29:54
 
分享
 

Manage episode 246073641 series 1452120
内容由NLP Highlights and Allen Institute for Artificial Intelligence提供。所有播客内容(包括剧集、图形和播客描述)均由 NLP Highlights and Allen Institute for Artificial Intelligence 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
  continue reading

145集单集

Artwork
icon分享
 
Manage episode 246073641 series 1452120
内容由NLP Highlights and Allen Institute for Artificial Intelligence提供。所有播客内容(包括剧集、图形和播客描述)均由 NLP Highlights and Allen Institute for Artificial Intelligence 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible to obtain annotations from non-experts, and discusses the tradeoffs involved in choosing this scheme. Then we talk about the challenges involved in using QA-based annotations for more complex phenomena like coreference. Finally, we briefly discuss the value of crowd-labeled datasets given the recent developments in pretraining large language models. Luke is an associate professor at the University of Washington and a Research Scientist at Facebook AI Research.
  continue reading

145集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放