Artwork

内容由HackerNoon提供。所有播客内容(包括剧集、图形和播客描述)均由 HackerNoon 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

The Mass Gap of the Space-time and its Shape

3:24
 
分享
 

Manage episode 431860200 series 3474385
内容由HackerNoon提供。所有播客内容(包括剧集、图形和播客描述)均由 HackerNoon 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/the-mass-gap-of-the-space-time-and-its-shape.
Explore Snyder's quantum space-time with focus on how its quanta has a positive mass, cell geometry and links to standard particle models.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #quantum-spacetime, #spacetime-mas-gap, #snyder's-algebra, #snyder's-quantum-space-time, #lorentz-invariant-space-time, #standard-model-particles, #quantum-gravity, #hackernoon-top-story, and more.
This story was written by: @phenomenology. Learn more about this writer by checking @phenomenology's about page, and for more stories, please visit hackernoon.com.
Check out our latest exploration into Snyder’s quantum space-time! We dive into how quanta of space-time have a positive mass, explore the intriguing 24-cell geometry, and discuss its potential links to the standard model of particles. Plus, we connect these findings to major concepts like mass generation and the flatness of the observable universe. TL;DR We’re investigating Snyder’s quantum space-time, focusing on its Lorentz invariance and the intriguing positive mass gap. The study highlights the 24-cell geometry, its symmetry group, and potential connections to the standard model of particles. This research touches on mass generation, Avogadro's number, and the observable universe's flatness.

  continue reading

301集单集

Artwork
icon分享
 
Manage episode 431860200 series 3474385
内容由HackerNoon提供。所有播客内容(包括剧集、图形和播客描述)均由 HackerNoon 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/the-mass-gap-of-the-space-time-and-its-shape.
Explore Snyder's quantum space-time with focus on how its quanta has a positive mass, cell geometry and links to standard particle models.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #quantum-spacetime, #spacetime-mas-gap, #snyder's-algebra, #snyder's-quantum-space-time, #lorentz-invariant-space-time, #standard-model-particles, #quantum-gravity, #hackernoon-top-story, and more.
This story was written by: @phenomenology. Learn more about this writer by checking @phenomenology's about page, and for more stories, please visit hackernoon.com.
Check out our latest exploration into Snyder’s quantum space-time! We dive into how quanta of space-time have a positive mass, explore the intriguing 24-cell geometry, and discuss its potential links to the standard model of particles. Plus, we connect these findings to major concepts like mass generation and the flatness of the observable universe. TL;DR We’re investigating Snyder’s quantum space-time, focusing on its Lorentz invariance and the intriguing positive mass gap. The study highlights the 24-cell geometry, its symmetry group, and potential connections to the standard model of particles. This research touches on mass generation, Avogadro's number, and the observable universe's flatness.

  continue reading

301集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放