Artwork

内容由MapScaping提供。所有播客内容(包括剧集、图形和播客描述)均由 MapScaping 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Using Lasers To Talk To Satellites

44:51
 
分享
 

Manage episode 366052424 series 2502116
内容由MapScaping提供。所有播客内容(包括剧集、图形和播客描述)均由 MapScaping 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

How do we get data from a satellite down to Earth? How do we task a satellite?

Today the answer is likely to be via radios and a system of downlink sites or ground stations. As the satellites pass overhead or within “line of sight” data can be sent via radio from the satellite to the receiver on the ground.

If you don’t want to wait until the satellite can see the ground station, you can send your data to a geostationary satellite that can always see a ground station and let it send the data back to Earth.

Radios are tried and tested, they have been used for this purpose since the inception of satellite communication and radio waves can pass through Earth's atmosphere without significant loss!

But … the frequency spectrum for radio waves is strictly regulated, which can limit available channels for communication, and the bandwidth of radio frequencies is limited, which can reduce the volume of data transmission.

What about lasers?

You can send more data faster with a laser, you don’t need to worry about interfering with someone else part of the radio spectrum, and ground stations can be much smaller even human-portable!

But … lasers struggle with clouds and the technology is still relatively new

So what is the best way to communicate with satellites? Radio or Laser? The answer is … it depends ;)

Jordan Wachs, Director of Business Development for SpaceRake.net does a great job adding context to this discussion but perhaps the bigger question here is what will we do when satellites become internet devices, part of the Internet of Things?

What if they were always on always connected in the same way your phone is always on, always connected? What will this enable?

This episode was sponsored by Sponsored by Sinergise, as part of Copernicus Data Space Ecosystem knowledge sharing

People who liked this episode also liked …

How to keep your satellite pointing at earth

https://mapscaping.com/podcast/how-to-keep-your-satellite-pointing-at-earth/

Hyperspectral v’s Multispectral

https://mapscaping.com/podcast/hyperspectral-vs-multispectral/

Sentinel Hub

https://mapscaping.com/podcast/sentinel-hub/

Swing by our website sometime https://mapscaping.com/

Some more episodes you might enjoy

ESRI, GIS careers, Geospatial Data Science

QGIS, Geospatial Python, ArcGIS Pro

Google Maps, Geomatics, Cartography

Location Intelligence, Mapping

  continue reading

238集单集

Artwork
icon分享
 
Manage episode 366052424 series 2502116
内容由MapScaping提供。所有播客内容(包括剧集、图形和播客描述)均由 MapScaping 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

How do we get data from a satellite down to Earth? How do we task a satellite?

Today the answer is likely to be via radios and a system of downlink sites or ground stations. As the satellites pass overhead or within “line of sight” data can be sent via radio from the satellite to the receiver on the ground.

If you don’t want to wait until the satellite can see the ground station, you can send your data to a geostationary satellite that can always see a ground station and let it send the data back to Earth.

Radios are tried and tested, they have been used for this purpose since the inception of satellite communication and radio waves can pass through Earth's atmosphere without significant loss!

But … the frequency spectrum for radio waves is strictly regulated, which can limit available channels for communication, and the bandwidth of radio frequencies is limited, which can reduce the volume of data transmission.

What about lasers?

You can send more data faster with a laser, you don’t need to worry about interfering with someone else part of the radio spectrum, and ground stations can be much smaller even human-portable!

But … lasers struggle with clouds and the technology is still relatively new

So what is the best way to communicate with satellites? Radio or Laser? The answer is … it depends ;)

Jordan Wachs, Director of Business Development for SpaceRake.net does a great job adding context to this discussion but perhaps the bigger question here is what will we do when satellites become internet devices, part of the Internet of Things?

What if they were always on always connected in the same way your phone is always on, always connected? What will this enable?

This episode was sponsored by Sponsored by Sinergise, as part of Copernicus Data Space Ecosystem knowledge sharing

People who liked this episode also liked …

How to keep your satellite pointing at earth

https://mapscaping.com/podcast/how-to-keep-your-satellite-pointing-at-earth/

Hyperspectral v’s Multispectral

https://mapscaping.com/podcast/hyperspectral-vs-multispectral/

Sentinel Hub

https://mapscaping.com/podcast/sentinel-hub/

Swing by our website sometime https://mapscaping.com/

Some more episodes you might enjoy

ESRI, GIS careers, Geospatial Data Science

QGIS, Geospatial Python, ArcGIS Pro

Google Maps, Geomatics, Cartography

Location Intelligence, Mapping

  continue reading

238集单集

Todos os episódios

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南