Artwork

内容由Radio Galaksija提供。所有播客内容(包括剧集、图形和播客描述)均由 Radio Galaksija 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Radio Galaksija #161: Mašinsko učenje u medicini (Ognjen Milićević) [22-11-2022]

1:56:45
 
分享
 

Manage episode 347807461 series 2644612
内容由Radio Galaksija提供。所有播客内容(包括剧集、图形和播客描述)均由 Radio Galaksija 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

U ovoj epizodi smo pričali o primenama mašinskog učenja u oblasti medicine i zdravstva, a gost je bio Ognjen Milićević, sa Instituta za medicinsku statistiku i informatiku Medicinskog fakulteta Univerziteta u Beogradu, bioinformatički istraživač u GenieUs Genomics i Machine Learning Tech Lead u kompaniji HTEC Group.
Ognjen je takođe i kolega podcaster i ima svoj podcast Baš dobra priča.
Pričali smo o različitim domenima i važnim i izazovnim problemima na koje se mašinsko učenje u medicini može primeniti.
Pričali smo o radiološkim problemima i korišćenju veštačke inteligencije (AI) i mašinskog učenja (ML), kako i kompjuterske vizije (en. computer vision) pri čitanju, segmentaciji, detekciji, klasifikaciji različitih objekata i karakteristika različitih vrsta radioloških, histopatoloških i drugih slika i snimaka u medicinskim dijagnostičkim metodama. Čućete razne primere, poput toga kako koristimo ML kada želimo da detektujemo ćelije raka na histopatološkim snimcima.
Tu su i razna pitanja poput toga kada i kako koristimo i NE koristimo ML algoritme i alate u medicini, gde jesu i gde nisu implementirani u softvere i uređaje za medicinsku dijagnostiku itd, i zašto nisu? Govorili smo malo i o obazrivosti i otporu prema uplivu savremenih tehnologija u dijagnostici itd.
Pričali smo i o tome na koji način se modeli, bili oni empirijski i ljudski ili računarski i AI modeli, evaluiraju i na koji način se bavimo uspešnošću modela i predikcija u dijagnostici ili terapiji.
Govorili smo o varijabilitetu u medicinskim podacima i intrinsičkim nesavršenostima dijagnostike i terapije, kao i o nesavršenostima algoritama mašinskog učenja i na koji način možemo da unapredimo našu medicinu uz svest o tome.
Pokrenuli smo i pitanja tehničkog, ML/AI i bioinformatičkog obrazovanja i pismenosti na studijama medicine i značaja te vrste pismenosti.
Na kraju, govorili smo i o mnoštvu inovacija koje dolaze od mnogobrojnih startup kompanija i o tome na koji način one mogu da unaprede medicinu, kao i kakve opasnosti i rizike nose sa sobom.
Support the show

Više o Radio Galaksiji, kao i mnoge druge sadržaje, možete naći na našem sajtu: https://radiogalaksija.rs. A ako volite ovo što radimo i želite da pomognete, potražite više informacija o tome kako to možete da uradite nalazi se ovde.

  continue reading

261集单集

Artwork
icon分享
 
Manage episode 347807461 series 2644612
内容由Radio Galaksija提供。所有播客内容(包括剧集、图形和播客描述)均由 Radio Galaksija 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

U ovoj epizodi smo pričali o primenama mašinskog učenja u oblasti medicine i zdravstva, a gost je bio Ognjen Milićević, sa Instituta za medicinsku statistiku i informatiku Medicinskog fakulteta Univerziteta u Beogradu, bioinformatički istraživač u GenieUs Genomics i Machine Learning Tech Lead u kompaniji HTEC Group.
Ognjen je takođe i kolega podcaster i ima svoj podcast Baš dobra priča.
Pričali smo o različitim domenima i važnim i izazovnim problemima na koje se mašinsko učenje u medicini može primeniti.
Pričali smo o radiološkim problemima i korišćenju veštačke inteligencije (AI) i mašinskog učenja (ML), kako i kompjuterske vizije (en. computer vision) pri čitanju, segmentaciji, detekciji, klasifikaciji različitih objekata i karakteristika različitih vrsta radioloških, histopatoloških i drugih slika i snimaka u medicinskim dijagnostičkim metodama. Čućete razne primere, poput toga kako koristimo ML kada želimo da detektujemo ćelije raka na histopatološkim snimcima.
Tu su i razna pitanja poput toga kada i kako koristimo i NE koristimo ML algoritme i alate u medicini, gde jesu i gde nisu implementirani u softvere i uređaje za medicinsku dijagnostiku itd, i zašto nisu? Govorili smo malo i o obazrivosti i otporu prema uplivu savremenih tehnologija u dijagnostici itd.
Pričali smo i o tome na koji način se modeli, bili oni empirijski i ljudski ili računarski i AI modeli, evaluiraju i na koji način se bavimo uspešnošću modela i predikcija u dijagnostici ili terapiji.
Govorili smo o varijabilitetu u medicinskim podacima i intrinsičkim nesavršenostima dijagnostike i terapije, kao i o nesavršenostima algoritama mašinskog učenja i na koji način možemo da unapredimo našu medicinu uz svest o tome.
Pokrenuli smo i pitanja tehničkog, ML/AI i bioinformatičkog obrazovanja i pismenosti na studijama medicine i značaja te vrste pismenosti.
Na kraju, govorili smo i o mnoštvu inovacija koje dolaze od mnogobrojnih startup kompanija i o tome na koji način one mogu da unaprede medicinu, kao i kakve opasnosti i rizike nose sa sobom.
Support the show

Više o Radio Galaksiji, kao i mnoge druge sadržaje, možete naći na našem sajtu: https://radiogalaksija.rs. A ako volite ovo što radimo i želite da pomognete, potražite više informacija o tome kako to možete da uradite nalazi se ovde.

  continue reading

261集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南