Artwork

内容由Athletics提供。所有播客内容(包括剧集、图形和播客描述)均由 Athletics 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

How Muscle Action Shifts at Different Sprinting Speeds and the Coaching Implications

14:15
 
分享
 

Manage episode 451074212 series 3600057
内容由Athletics提供。所有播客内容(包括剧集、图形和播客描述)均由 Athletics 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Effective sprint training requires an in-depth understanding of the physiological demands sprinters face as they accelerate and maintain high speeds. This deep dive will explore a study by Dorn, Schache, and Pandy (2012) highlighting the muscular strategy shifts that occur as sprinters increase their running speed. This article explores the findings of their study, discusses the key muscular adaptations, and provides practical implications for coaches working with sprinters and distance runners.
Key Findings
Dorn et al. (2012) revealed that as athletes increase their speed, they shift from relying on the ankle plantarflexors (soleus and gastrocnemius) to the hip muscles for achieving further acceleration. This change occurs around the 7 m/s mark, which is particularly relevant for sprinters who race at speeds consistently above this threshold.

  1. Below 7 m/s: The Role of Stride Length
    At lower speeds, up to around 7 m/s, increasing stride length is the primary mechanism for improving running velocity. The soleus and gastrocnemius play a significant role in generating vertical ground reaction forces that propel the body upwards and forwards. This action enhances the time the sprinter spends in the air, contributing to a longer stride.
  2. Above 7 m/s: The Shift to Stride Frequency
    As speed increases, ground contact time decreases, limiting the effectiveness of the ankle plantarflexors. The force-velocity relationship of muscles means that at higher velocities, the ability of the soleus and gastrocnemius to generate force diminishes. Beyond 7 m/s, the focus shifts to increasing stride frequency, which is achieved through faster leg swing facilitated by the hip muscles—specifically the iliopsoas, gluteus maximus, and hamstrings.

Source

  continue reading

30集单集

Artwork
icon分享
 
Manage episode 451074212 series 3600057
内容由Athletics提供。所有播客内容(包括剧集、图形和播客描述)均由 Athletics 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Effective sprint training requires an in-depth understanding of the physiological demands sprinters face as they accelerate and maintain high speeds. This deep dive will explore a study by Dorn, Schache, and Pandy (2012) highlighting the muscular strategy shifts that occur as sprinters increase their running speed. This article explores the findings of their study, discusses the key muscular adaptations, and provides practical implications for coaches working with sprinters and distance runners.
Key Findings
Dorn et al. (2012) revealed that as athletes increase their speed, they shift from relying on the ankle plantarflexors (soleus and gastrocnemius) to the hip muscles for achieving further acceleration. This change occurs around the 7 m/s mark, which is particularly relevant for sprinters who race at speeds consistently above this threshold.

  1. Below 7 m/s: The Role of Stride Length
    At lower speeds, up to around 7 m/s, increasing stride length is the primary mechanism for improving running velocity. The soleus and gastrocnemius play a significant role in generating vertical ground reaction forces that propel the body upwards and forwards. This action enhances the time the sprinter spends in the air, contributing to a longer stride.
  2. Above 7 m/s: The Shift to Stride Frequency
    As speed increases, ground contact time decreases, limiting the effectiveness of the ankle plantarflexors. The force-velocity relationship of muscles means that at higher velocities, the ability of the soleus and gastrocnemius to generate force diminishes. Beyond 7 m/s, the focus shifts to increasing stride frequency, which is achieved through faster leg swing facilitated by the hip muscles—specifically the iliopsoas, gluteus maximus, and hamstrings.

Source

  continue reading

30集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放