Artwork

内容由Felipe Flores提供。所有播客内容(包括剧集、图形和播客描述)均由 Felipe Flores 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

#202 Building A Unified and Uniform Approach To Data And Data Teams With Nathan Steiner, Director of Field Engineering, ANZ, at Databricks

45:42
 
分享
 

Manage episode 338219942 series 2310475
内容由Felipe Flores提供。所有播客内容(包括剧集、图形和播客描述)均由 Felipe Flores 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Later this month, Nathan Steiner, the Director of Field Engineering, ANZ, at Databricks, will give a presentation at the Data Engineering Summit. There he will talk about the “habits” of data-driven organisations, and the importance of an open architecture that combines the best elements of data lakes and data warehouses.

Steiner kindly appeared on this episode of the Data Futurology podcast to talk about this, and further discuss the Databricks vision for data-driven workspaces.

“Historically, you look at data engineers, data analysts, AI, machine learning and data scientists, they were focused on different types of data, so you had your data engineers focused on your siloed and disparate ADW enterprise data warehousing, relational database structured systems, and you had your data scientists looking at predominantly real time data,” he says during the wide-ranging conversation.

The solution, to Steiner’s and Databricks’ vision, is bringing those data resources together and making for a more collaborative data environment. “It’s more pragmatic and effective for these job roles to be working from a single uniform platform,” he says.

As Steiner notes during the conversation, the personalisation that is so important to modern business is driven from being able to make the data resources collaborative. He highlights the example of a financial services company that wants to be able to issue credit within five minutes from an application via a smartphone. “In the back end, it's AI, and ML that is doing the credit risk assessment frameworks of that particular individual and creating that value customer experience,” he says.

Finally, Steiner considers the governance implications of the Databricks lakehouse, and the advantages of having a uniform and unified approach when it comes to governance.

For more insights on breaking down data silos and unifying data teams, be sure to tune in to the podcast!

Enjoy the show!

Learn more about Databricks

Learn more about Nathan Steiner

Thank you to you our sponsor, Talent Insights Group!

Read the full podcast episode summary here.

  continue reading

268集单集

Artwork
icon分享
 
Manage episode 338219942 series 2310475
内容由Felipe Flores提供。所有播客内容(包括剧集、图形和播客描述)均由 Felipe Flores 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Later this month, Nathan Steiner, the Director of Field Engineering, ANZ, at Databricks, will give a presentation at the Data Engineering Summit. There he will talk about the “habits” of data-driven organisations, and the importance of an open architecture that combines the best elements of data lakes and data warehouses.

Steiner kindly appeared on this episode of the Data Futurology podcast to talk about this, and further discuss the Databricks vision for data-driven workspaces.

“Historically, you look at data engineers, data analysts, AI, machine learning and data scientists, they were focused on different types of data, so you had your data engineers focused on your siloed and disparate ADW enterprise data warehousing, relational database structured systems, and you had your data scientists looking at predominantly real time data,” he says during the wide-ranging conversation.

The solution, to Steiner’s and Databricks’ vision, is bringing those data resources together and making for a more collaborative data environment. “It’s more pragmatic and effective for these job roles to be working from a single uniform platform,” he says.

As Steiner notes during the conversation, the personalisation that is so important to modern business is driven from being able to make the data resources collaborative. He highlights the example of a financial services company that wants to be able to issue credit within five minutes from an application via a smartphone. “In the back end, it's AI, and ML that is doing the credit risk assessment frameworks of that particular individual and creating that value customer experience,” he says.

Finally, Steiner considers the governance implications of the Databricks lakehouse, and the advantages of having a uniform and unified approach when it comes to governance.

For more insights on breaking down data silos and unifying data teams, be sure to tune in to the podcast!

Enjoy the show!

Learn more about Databricks

Learn more about Nathan Steiner

Thank you to you our sponsor, Talent Insights Group!

Read the full podcast episode summary here.

  continue reading

268集单集

Alla avsnitt

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放