Artwork

内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

#124 State Space Models & Structural Time Series, with Jesse Grabowski

1:35:43
 
分享
 

Manage episode 462756448 series 2635823
内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian statistics offers a robust framework for econometric modeling.
  • State space models provide a comprehensive way to understand time series data.
  • Gaussian random walks serve as a foundational model in time series analysis.
  • Innovations represent external shocks that can significantly impact forecasts.
  • Understanding the assumptions behind models is key to effective forecasting.
  • Complex models are not always better; simplicity can be powerful.
  • Forecasting requires careful consideration of potential disruptions. Understanding observed and hidden states is crucial in modeling.
  • Latent abilities can be modeled as Gaussian random walks.
  • State space models can be highly flexible and diverse.
  • Composability allows for the integration of different model components.
  • Trends in time series should reflect real-world dynamics.
  • Seasonality can be captured through Fourier bases.
  • AR components help model residuals in time series data.
  • Exogenous regression components can enhance state space models.
  • Causal analysis in time series often involves interventions and counterfactuals.
  • Time-varying regression allows for dynamic relationships between variables.
  • Kalman filters were originally developed for tracking rockets in space.
  • The Kalman filter iteratively updates beliefs based on new data.
  • Missing data can be treated as hidden states in the Kalman filter framework.
  • The Kalman filter is a practical application of Bayes' theorem in a sequential context.
  • Understanding the dynamics of systems is crucial for effective modeling.
  • The state space module in PyMC simplifies complex time series modeling tasks.

Chapters:

00:00 Introduction to Jesse Krabowski and Time Series Analysis

04:33 Jesse's Journey into Bayesian Statistics

10:51 Exploring State Space Models

18:28 Understanding State Space Models and Their Components

  continue reading

182集单集

Artwork
icon分享
 
Manage episode 462756448 series 2635823
内容由Alexandre Andorra提供。所有播客内容(包括剧集、图形和播客描述)均由 Alexandre Andorra 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Bayesian statistics offers a robust framework for econometric modeling.
  • State space models provide a comprehensive way to understand time series data.
  • Gaussian random walks serve as a foundational model in time series analysis.
  • Innovations represent external shocks that can significantly impact forecasts.
  • Understanding the assumptions behind models is key to effective forecasting.
  • Complex models are not always better; simplicity can be powerful.
  • Forecasting requires careful consideration of potential disruptions. Understanding observed and hidden states is crucial in modeling.
  • Latent abilities can be modeled as Gaussian random walks.
  • State space models can be highly flexible and diverse.
  • Composability allows for the integration of different model components.
  • Trends in time series should reflect real-world dynamics.
  • Seasonality can be captured through Fourier bases.
  • AR components help model residuals in time series data.
  • Exogenous regression components can enhance state space models.
  • Causal analysis in time series often involves interventions and counterfactuals.
  • Time-varying regression allows for dynamic relationships between variables.
  • Kalman filters were originally developed for tracking rockets in space.
  • The Kalman filter iteratively updates beliefs based on new data.
  • Missing data can be treated as hidden states in the Kalman filter framework.
  • The Kalman filter is a practical application of Bayes' theorem in a sequential context.
  • Understanding the dynamics of systems is crucial for effective modeling.
  • The state space module in PyMC simplifies complex time series modeling tasks.

Chapters:

00:00 Introduction to Jesse Krabowski and Time Series Analysis

04:33 Jesse's Journey into Bayesian Statistics

10:51 Exploring State Space Models

18:28 Understanding State Space Models and Their Components

  continue reading

182集单集

Kaikki jaksot

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放