Artwork

内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Kubeflow: TensorFlow on Kubernetes with David Aronchick (Repeat)

55:40
 
分享
 

Manage episode 280115043 series 1433944
内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Originally published January 25, 2019

When TensorFlow came out of Google, the machine learning community converged around it. TensorFlow is a framework for building machine learning models, but the lifecycle of a machine learning model has a scope that is bigger than just creating a model. Machine learning developers also need to have a testing and deployment process for continuous delivery of models.

The continuous delivery process for machine learning models is like the continuous delivery process for microservices, but can be more complicated. A developer testing a model on their local machine is working with a smaller data set than what they will have access to when it is deployed. A machine learning engineer needs to be conscious of versioning and auditability.

Kubeflow is a machine learning toolkit for Kubernetes based on Google’s internal machine learning pipelines. Google open sourced Kubernetes and TensorFlow, and the projects have users AWS and Microsoft. David Aronchick is the head of open source machine learning strategy at Microsoft, and he joins the show to talk about the problems that Kubeflow solves for developers, and the evolving strategies for cloud providers.

David was previously on the show when he worked at Google, and in this episode he provides some useful discussion about how open source software presents a great opportunity for the cloud providers to collaborate with each other in a positive sum relationship.

The post Kubeflow: TensorFlow on Kubernetes with David Aronchick (Repeat) appeared first on Software Engineering Daily.

  continue reading

176集单集

Artwork
icon分享
 
Manage episode 280115043 series 1433944
内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Originally published January 25, 2019

When TensorFlow came out of Google, the machine learning community converged around it. TensorFlow is a framework for building machine learning models, but the lifecycle of a machine learning model has a scope that is bigger than just creating a model. Machine learning developers also need to have a testing and deployment process for continuous delivery of models.

The continuous delivery process for machine learning models is like the continuous delivery process for microservices, but can be more complicated. A developer testing a model on their local machine is working with a smaller data set than what they will have access to when it is deployed. A machine learning engineer needs to be conscious of versioning and auditability.

Kubeflow is a machine learning toolkit for Kubernetes based on Google’s internal machine learning pipelines. Google open sourced Kubernetes and TensorFlow, and the projects have users AWS and Microsoft. David Aronchick is the head of open source machine learning strategy at Microsoft, and he joins the show to talk about the problems that Kubeflow solves for developers, and the evolving strategies for cloud providers.

David was previously on the show when he worked at Google, and in this episode he provides some useful discussion about how open source software presents a great opportunity for the cloud providers to collaborate with each other in a positive sum relationship.

The post Kubeflow: TensorFlow on Kubernetes with David Aronchick (Repeat) appeared first on Software Engineering Daily.

  continue reading

176集单集

Kaikki jaksot

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放