Artwork

内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Reinforcement Learning and Robotics with Nathan Lambert

55:03
 
分享
 

Manage episode 283271622 series 1433944
内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Reinforcement learning is a paradigm in machine learning that uses incentives- or “reinforcement”- to drive learning. The learner is conceptualized as an intelligent agent working within a system of rewards and penalties in order to solve a novel problem. The agent is designed to maximize rewards while pursuing a solution by trial-and-error.

Programming a system to respond to the complex and unpredictable “real world” is one of the principal challenges in robotics engineering. One field which is finding new applications for reinforcement learning is the study of MEMS devices- robots or other electronic devices built at the micrometer scale. The use of reinforcement learning in microscopic devices poses a challenging engineering problem, due to constraints with power usage and computational power.

Nathan Lambert is a PhD student at Berkeley who works with the Berkeley Autonomous Microsystems Lab. He has also worked at Facebook AI Research and Tesla. He joins the show today to talk about the application of reinforcement learning to robotics and how deep learning is changing the MEMS device landscape.

Sponsorship inquiries: sponsor@softwareengineeringdaily.com

The post Reinforcement Learning and Robotics with Nathan Lambert appeared first on Software Engineering Daily.

  continue reading

176集单集

Artwork
icon分享
 
Manage episode 283271622 series 1433944
内容由Machine Learning Archives - Software Engineering Daily提供。所有播客内容(包括剧集、图形和播客描述)均由 Machine Learning Archives - Software Engineering Daily 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Reinforcement learning is a paradigm in machine learning that uses incentives- or “reinforcement”- to drive learning. The learner is conceptualized as an intelligent agent working within a system of rewards and penalties in order to solve a novel problem. The agent is designed to maximize rewards while pursuing a solution by trial-and-error.

Programming a system to respond to the complex and unpredictable “real world” is one of the principal challenges in robotics engineering. One field which is finding new applications for reinforcement learning is the study of MEMS devices- robots or other electronic devices built at the micrometer scale. The use of reinforcement learning in microscopic devices poses a challenging engineering problem, due to constraints with power usage and computational power.

Nathan Lambert is a PhD student at Berkeley who works with the Berkeley Autonomous Microsystems Lab. He has also worked at Facebook AI Research and Tesla. He joins the show today to talk about the application of reinforcement learning to robotics and how deep learning is changing the MEMS device landscape.

Sponsorship inquiries: sponsor@softwareengineeringdaily.com

The post Reinforcement Learning and Robotics with Nathan Lambert appeared first on Software Engineering Daily.

  continue reading

176集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放