Artwork

内容由Ludwig-Maximilians-Universität München and MCMP Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Ludwig-Maximilians-Universität München and MCMP Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Quantified Probability Logics: How Boolean Algebras Met Real-Closed Fields

51:28
 
分享
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117459 series 2929680
内容由Ludwig-Maximilians-Universität München and MCMP Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Ludwig-Maximilians-Universität München and MCMP Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (4 December, 2014) titled "Quantified probability logics: how Boolean algebras met real-closed fields". Abstract: This talk is devoted to one interesting probability logic with quantifiers over events — henceforth denoted by QPL. That is to say, the quantifiers in QPL are intended to range over all events of the probability space at hand. Here I will be concerned with fundamental questions about the expressive power and algorithmic content of QPL. Note that these two aspects are closely connected, and in fact there exists a trade-off between them: whenever a logic has a high computational complexity, we expect some natural higher-order properties to be definable in the corresponding language. For each class of spaces, we introduce its theory, viz. the set of probabilistic sentences true in every space from the class. Then the theory of the class of all spaces turns out to be of a huge complexity, being computably equivalent to the true second-order arithmetic of natural numbers. On the other hand, many important properties of probability spaces — like those of being finite, discrete and atomless — are definable by suitable formulas of our language. Further, for any class of atomless spaces, there exists an algorithm for deciding whether a given probabilistic formula belongs to its theory or not; moreover, this continues to hold even if we extend our formalism by adding quantifiers over reals. To sum up, the proposed logic and its variations, being attractive from the viewpoint of probability theory and having nice algebraic features, prove to be very useful for investigating connections between probability and logic. In the final part of the talk I will compare QPL with other probabilistic languages (including Halpern's first-order logics of probability and Keisler's model-theoretic logics with probability quantifiers), discuss analogies with research in Boolean algebras and show, in particular, how QPL can serve for classification of probability spaces.
  continue reading

22集单集

Artwork
icon分享
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117459 series 2929680
内容由Ludwig-Maximilians-Universität München and MCMP Team提供。所有播客内容(包括剧集、图形和播客描述)均由 Ludwig-Maximilians-Universität München and MCMP Team 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (4 December, 2014) titled "Quantified probability logics: how Boolean algebras met real-closed fields". Abstract: This talk is devoted to one interesting probability logic with quantifiers over events — henceforth denoted by QPL. That is to say, the quantifiers in QPL are intended to range over all events of the probability space at hand. Here I will be concerned with fundamental questions about the expressive power and algorithmic content of QPL. Note that these two aspects are closely connected, and in fact there exists a trade-off between them: whenever a logic has a high computational complexity, we expect some natural higher-order properties to be definable in the corresponding language. For each class of spaces, we introduce its theory, viz. the set of probabilistic sentences true in every space from the class. Then the theory of the class of all spaces turns out to be of a huge complexity, being computably equivalent to the true second-order arithmetic of natural numbers. On the other hand, many important properties of probability spaces — like those of being finite, discrete and atomless — are definable by suitable formulas of our language. Further, for any class of atomless spaces, there exists an algorithm for deciding whether a given probabilistic formula belongs to its theory or not; moreover, this continues to hold even if we extend our formalism by adding quantifiers over reals. To sum up, the proposed logic and its variations, being attractive from the viewpoint of probability theory and having nice algebraic features, prove to be very useful for investigating connections between probability and logic. In the final part of the talk I will compare QPL with other probabilistic languages (including Halpern's first-order logics of probability and Keisler's model-theoretic logics with probability quantifiers), discuss analogies with research in Boolean algebras and show, in particular, how QPL can serve for classification of probability spaces.
  continue reading

22集单集

Tất cả các tập

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南