Artwork

内容由O'Reilly Media提供。所有播客内容(包括剧集、图形和播客描述)均由 O'Reilly Media 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Understanding deep neural networks

39:31
 
分享
 

Manage episode 248276628 series 61203
内容由O'Reilly Media提供。所有播客内容(包括剧集、图形和播客描述)均由 O'Reilly Media 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode of the Data Show, I speak with Michael Mahoney, a member of RISELab, the International Computer Science Institute, and the Department of Statistics at UC Berkeley. A physicist by training, Mahoney has been at the forefront of many important problems in large-scale data analysis. On the theoretical side, his works spans algorithmic and statistical methods for matrices, graphs, regression, optimization, and related problems. On the applications side, he has contributed to systems used for internet and social media analysis, social network analysis, as well as for a host of applications in the physical and life sciences. Most recently, he has been working on deep neural networks, specifically developing theoretical methods and practical diagnostic tools that should be helpful to practitioners who use deep learning.

Analyzing deep neural networks
Analyzing deep neural networks with WeightWatcher. Image by Michael Mahoney and Charles Martin, used with permission.

We had a great conversation spanning many topics, including:

Related resources:

  continue reading

168集单集

Artwork

Understanding deep neural networks

O'Reilly Data Show Podcast

1,106 subscribers

published

icon分享
 
Manage episode 248276628 series 61203
内容由O'Reilly Media提供。所有播客内容(包括剧集、图形和播客描述)均由 O'Reilly Media 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode of the Data Show, I speak with Michael Mahoney, a member of RISELab, the International Computer Science Institute, and the Department of Statistics at UC Berkeley. A physicist by training, Mahoney has been at the forefront of many important problems in large-scale data analysis. On the theoretical side, his works spans algorithmic and statistical methods for matrices, graphs, regression, optimization, and related problems. On the applications side, he has contributed to systems used for internet and social media analysis, social network analysis, as well as for a host of applications in the physical and life sciences. Most recently, he has been working on deep neural networks, specifically developing theoretical methods and practical diagnostic tools that should be helpful to practitioners who use deep learning.

Analyzing deep neural networks
Analyzing deep neural networks with WeightWatcher. Image by Michael Mahoney and Charles Martin, used with permission.

We had a great conversation spanning many topics, including:

Related resources:

  continue reading

168集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放