Artwork

内容由Breaking Math, Gabriel Hesch, and Autumn Phaneuf提供。所有播客内容(包括剧集、图形和播客描述)均由 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Molecular dynamics simulation with GFlowNets: machine learning the importance of energy estimators in computational chemistry and drug discovery

28:23
 
分享
 

Manage episode 442934732 series 3584638
内容由Breaking Math, Gabriel Hesch, and Autumn Phaneuf提供。所有播客内容(包括剧集、图形和播客描述)均由 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: breakingmathpodcast@gmail.com

  continue reading

147集单集

Artwork
icon分享
 
Manage episode 442934732 series 3584638
内容由Breaking Math, Gabriel Hesch, and Autumn Phaneuf提供。所有播客内容(包括剧集、图形和播客描述)均由 Breaking Math, Gabriel Hesch, and Autumn Phaneuf 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: breakingmathpodcast@gmail.com

  continue reading

147集单集

Усі епізоди

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南