Artwork

内容由Kyle Polich提供。所有播客内容(包括剧集、图形和播客描述)均由 Kyle Polich 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

Graph Transformations

32:48
 
分享
 

Manage episode 454650594 series 49487
内容由Kyle Polich提供。所有播客内容(包括剧集、图形和播客描述)均由 Kyle Polich 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode, Adam Machowczyk, a PhD student at the University of Leicester, specializes in graph rewriting and its intersection with machine learning, particularly Graph Neural Networks.

Adam explains how graph rewriting provides a formalized method to modify graphs using rule-based transformations, allowing for tasks like graph completion, attribute prediction, and structural evolution.

Bridging the worlds of graph rewriting and machine learning, Adam's work aspire to open new possibilities for creating adaptive, scalable models capable of solving challenges that traditional methods struggle with, such as handling heterogeneous graphs or incorporating incremental updates efficiently.

Real-life applications discussed include using graph transformations to improve recommender systems in social networks, molecular research in chemistry, and enhancing IoT network analysis.

  continue reading

598集单集

Artwork

Graph Transformations

Data Skeptic

3,169 subscribers

published

icon分享
 
Manage episode 454650594 series 49487
内容由Kyle Polich提供。所有播客内容(包括剧集、图形和播客描述)均由 Kyle Polich 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In this episode, Adam Machowczyk, a PhD student at the University of Leicester, specializes in graph rewriting and its intersection with machine learning, particularly Graph Neural Networks.

Adam explains how graph rewriting provides a formalized method to modify graphs using rule-based transformations, allowing for tasks like graph completion, attribute prediction, and structural evolution.

Bridging the worlds of graph rewriting and machine learning, Adam's work aspire to open new possibilities for creating adaptive, scalable models capable of solving challenges that traditional methods struggle with, such as handling heterogeneous graphs or incorporating incremental updates efficiently.

Real-life applications discussed include using graph transformations to improve recommender systems in social networks, molecular research in chemistry, and enhancing IoT network analysis.

  continue reading

598集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

版权2025 | 隐私政策 | 服务条款 | | 版权
边探索边听这个节目
播放