Artwork

内容由VTB Bank提供。所有播客内容(包括剧集、图形和播客描述)均由 VTB Bank 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

MLOps, часть II: погружаемся в специфику работы с данными

1:19:09
 
分享
 

Manage episode 377095778 series 2948420
内容由VTB Bank提供。所有播客内容(包括剧集、图形和播客描述)均由 VTB Bank 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Во второй части большой темы про MLOps, которую мы разбили на несколько эпизодов подкаста, ещё глубже погружаемся в тему машинного обучения и работы с данными, лежащей в основе ML. Рассматриваем вопросы обогащения данных, разбираемся с разметкой, говорим о специфических аспектах управления данными.

В этом выпуске вы услышите:

Почему общепринятых стандартов управления данными недостаточно для работы с большими данными для ML;

Что такое хвосты и артефакты в сверхбольших данных;

Может ли overfeeding стать причиной overfitting’a (или это одно и то же?);

И многое другое!

Юрий Карев, руководитель управления процессов и стандартов моделирования и машинного обучения ВТБ, и Алексей Незнанов, к.т.н, старший научный сотрудник международной лаборатории интеллектуальных систем и структурного анализа НИУ ВШЭ, подошли к теме с двух сторон: теоретической и практической. Помогли ведущей подкаста разобраться с терминологией. А также поговорили про специфику подходов к образованию для специалистов в Data Science, DataOps и MLOps.

Полезные ресурсы и ссылки:

Курс MLOps (OTUS): https://otus.ru/lessons/ml-bigdata/

Основные идеи из книги «Сотрудничество в DevOps-культуре»: http://agilemindset.ru/основные-идеи-из-книги-сотрудничест/

MLOps: Continuous delivery and automation pipelines in machine learning: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Как создавать качественные ML-системы. Часть 1: каждый проект должен начинаться с плана: https://habr.com/ru/companies/vk/articles/749850/

Как создавать качественные ML-системы. Часть 2: приручаем хаос: https://habr.com/ru/companies/vk/articles/749852/

The Data Engineering Cookbook: https://github.com/andkret/Cookbook

Стандарты:

ISO/IEC DIS 5259-1: https://www.iso.org/standard/81088.html

ISO/IEC DIS 5259-4: https://www.iso.org/standard/81093.html

ISO/IEC 8183:2023: https://www.iso.org/standard/83002.html

  continue reading

54集单集

Artwork
icon分享
 
Manage episode 377095778 series 2948420
内容由VTB Bank提供。所有播客内容(包括剧集、图形和播客描述)均由 VTB Bank 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

Во второй части большой темы про MLOps, которую мы разбили на несколько эпизодов подкаста, ещё глубже погружаемся в тему машинного обучения и работы с данными, лежащей в основе ML. Рассматриваем вопросы обогащения данных, разбираемся с разметкой, говорим о специфических аспектах управления данными.

В этом выпуске вы услышите:

Почему общепринятых стандартов управления данными недостаточно для работы с большими данными для ML;

Что такое хвосты и артефакты в сверхбольших данных;

Может ли overfeeding стать причиной overfitting’a (или это одно и то же?);

И многое другое!

Юрий Карев, руководитель управления процессов и стандартов моделирования и машинного обучения ВТБ, и Алексей Незнанов, к.т.н, старший научный сотрудник международной лаборатории интеллектуальных систем и структурного анализа НИУ ВШЭ, подошли к теме с двух сторон: теоретической и практической. Помогли ведущей подкаста разобраться с терминологией. А также поговорили про специфику подходов к образованию для специалистов в Data Science, DataOps и MLOps.

Полезные ресурсы и ссылки:

Курс MLOps (OTUS): https://otus.ru/lessons/ml-bigdata/

Основные идеи из книги «Сотрудничество в DevOps-культуре»: http://agilemindset.ru/основные-идеи-из-книги-сотрудничест/

MLOps: Continuous delivery and automation pipelines in machine learning: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Как создавать качественные ML-системы. Часть 1: каждый проект должен начинаться с плана: https://habr.com/ru/companies/vk/articles/749850/

Как создавать качественные ML-системы. Часть 2: приручаем хаос: https://habr.com/ru/companies/vk/articles/749852/

The Data Engineering Cookbook: https://github.com/andkret/Cookbook

Стандарты:

ISO/IEC DIS 5259-1: https://www.iso.org/standard/81088.html

ISO/IEC DIS 5259-4: https://www.iso.org/standard/81093.html

ISO/IEC 8183:2023: https://www.iso.org/standard/83002.html

  continue reading

54集单集

Semua episod

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南

边探索边听这个节目
播放