Artwork

内容由Marcel Kurovski提供。所有播客内容(包括剧集、图形和播客描述)均由 Marcel Kurovski 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal
Player FM -播客应用
使用Player FM应用程序离线!

#22: Pinterest Homefeed and Ads Ranking with Prabhat Agarwal and Aayush Mudgal

1:24:07
 
分享
 

Manage episode 422219847 series 3288795
内容由Marcel Kurovski提供。所有播客内容(包括剧集、图形和播客描述)均由 Marcel Kurovski 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In episode 22 of Recsperts, we welcome Prabhat Agarwal, Senior ML Engineer, and Aayush Mudgal, Staff ML Engineer, both from Pinterest, to the show. Prabhat works on recommendations and search systems at Pinterest, leading representation learning efforts. Aayush is responsible for ads ranking and privacy-aware conversion modeling. We discuss user and content modeling, short- vs. long-term objectives, evaluation as well as multi-task learning and touch on counterfactual evaluation as well.

In our interview, Prabhat guides us through the journey of continuous improvements of Pinterest's Homefeed personalization starting with techniques such as gradient boosting over two-tower models to DCN and transformers. We discuss how to capture users' short- and long-term preferences through multiple embeddings and the role of candidate generators for content diversification. Prabhat shares some details about position debiasing and the challenges to facilitate exploration.
With Aayush we get the chance to dive into the specifics of ads ranking at Pinterest and he helps us to better understand how multifaceted ads can be. We learn more about the pain of having too many models and the Pinterest's efforts to consolidate the model landscape to improve infrastructural costs, maintainability, and efficiency. Aayush also shares some insights about exploration and corresponding randomization in the context of ads and how user behavior is very different between different kinds of ads.
Both guests highlight the role of counterfactual evaluation and its impact for faster experimentation.

Towards the end of the episode, we also touch a bit on learnings from last year's RecSys challenge.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:51) - Guest Introductions
  • (09:57) - Pinterest Introduction
  • (21:57) - Homefeed Personalization
  • (47:27) - Ads Ranking
  • (01:14:58) - RecSys Challenge 2023
  • (01:20:26) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26集单集

Artwork
icon分享
 
Manage episode 422219847 series 3288795
内容由Marcel Kurovski提供。所有播客内容(包括剧集、图形和播客描述)均由 Marcel Kurovski 或其播客平台合作伙伴直接上传和提供。如果您认为有人在未经您许可的情况下使用您的受版权保护的作品,您可以按照此处概述的流程进行操作https://zh.player.fm/legal

In episode 22 of Recsperts, we welcome Prabhat Agarwal, Senior ML Engineer, and Aayush Mudgal, Staff ML Engineer, both from Pinterest, to the show. Prabhat works on recommendations and search systems at Pinterest, leading representation learning efforts. Aayush is responsible for ads ranking and privacy-aware conversion modeling. We discuss user and content modeling, short- vs. long-term objectives, evaluation as well as multi-task learning and touch on counterfactual evaluation as well.

In our interview, Prabhat guides us through the journey of continuous improvements of Pinterest's Homefeed personalization starting with techniques such as gradient boosting over two-tower models to DCN and transformers. We discuss how to capture users' short- and long-term preferences through multiple embeddings and the role of candidate generators for content diversification. Prabhat shares some details about position debiasing and the challenges to facilitate exploration.
With Aayush we get the chance to dive into the specifics of ads ranking at Pinterest and he helps us to better understand how multifaceted ads can be. We learn more about the pain of having too many models and the Pinterest's efforts to consolidate the model landscape to improve infrastructural costs, maintainability, and efficiency. Aayush also shares some insights about exploration and corresponding randomization in the context of ads and how user behavior is very different between different kinds of ads.
Both guests highlight the role of counterfactual evaluation and its impact for faster experimentation.

Towards the end of the episode, we also touch a bit on learnings from last year's RecSys challenge.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.
Don't forget to follow the podcast and please leave a review

  • (00:00) - Introduction
  • (03:51) - Guest Introductions
  • (09:57) - Pinterest Introduction
  • (21:57) - Homefeed Personalization
  • (47:27) - Ads Ranking
  • (01:14:58) - RecSys Challenge 2023
  • (01:20:26) - Closing Remarks

Links from the Episode:

Papers:

General Links:

  continue reading

26集单集

所有剧集

×
 
Loading …

欢迎使用Player FM

Player FM正在网上搜索高质量的播客,以便您现在享受。它是最好的播客应用程序,适用于安卓、iPhone和网络。注册以跨设备同步订阅。

 

快速参考指南